Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuxi Feng is active.

Publication


Featured researches published by Yuxi Feng.


Diabetes | 2011

Diabetic Retinopathy: Targeting Vasoregression

Hans-Peter Hammes; Yuxi Feng; Frederick Pfister; Michael Brownlee

Diabetic retinopathy is a clinically well-defined, sight-threatening, chronic microvascular complication that eventually affects virtually all patients with diabetes. Diabetic retinopathy is characterized by gradually progressive alterations in the retinal microvasculature, leading to areas of retinal nonperfusion, increased vasopermeability, and in response to retinal nonperfusion, pathologic intraocular proliferation of retinal vessels (1–3). Most diabetes researchers and clinicians are aware of the major advances made in understanding the pathobiology of proliferative diabetic retinopathy. However mechanisms underlying the progressive alterations in retinal microvessels, which precede and stimulate neovascularization, are less well-known. In this review, current information about the pathogenesis of the primary lesion of diabetic retinopathy, retinal capillary vasoregression (see Fig. 1), is presented. FIG. 1. Phenotype of vasoregression in the diabetic retina. In both experimental diabetic rats and diabetic humans, capillary occlusions occur. Nondiabetic ( A ) and 6-month diabetic rat retina with acellular capillaries (arrows) ( B ). Nondiabetic ( C ) and diabetic ( D ) human retinal digest preparation. Periodic acid-Schiff staining (original magnification ×250). Diabetic retinopathy is often considered as a complication that contrasts with other vascular sequelae of this disease because it is associated with new vessel formation, while diabetic heart disease and diabetic nephropathy are characterized by impaired angiogenesis (4). Diabetic retinopathy is generally grouped with tumor angiogenesis and is presented as a paradigm of a neovascular disease (5). As outlined in this review, the natural history of diabetic retinopathy starts with vasoregression. Recent investigations have brought new insight regarding the primary vasoregressive process that stimulates angiogenesis, provoking new directions of thinking about possible prevention and intervention (1). Diabetic retinopathy starts with the loss of the two cellular components of retinal capillaries: the pericyte, a vessel support cell, and the endothelial cell. The exact sequence of loss in humans is not established because early human retinal samples are not available, but animal …


Diabetes | 2008

Pericyte Migration : A Novel Mechanism of Pericyte Loss in Experimental Diabetic Retinopathy

Frederick Pfister; Yuxi Feng; Franziska vom Hagen; Sigrid Hoffmann; Grietje Molema; Jan-Luuk Hillebrands; Moshe Shani; Urban Deutsch; Hans-Peter Hammes

OBJECTIVE— The mechanism underlying pericyte loss during incipient diabetic retinopathy remains controversial. Hyperglycemia induces angiopoietin-2 (Ang-2) transcription, which modulates capillary pericyte coverage. In this study, we assessed loss of pericyte subgroups and the contribution of Ang-2 to pericyte migration. RESEARCH DESIGN AND METHODS— Numbers of total pericytes and their subgroups were quantified in retinal digest preparations of spontaneous diabetic XLacZ mice. Pericytes were divided into subgroups according to their localization, their position relative to adjacent endothelial cells, and the expression of LacZ. The contribution of Ang-2 to pericyte migration was assessed in Ang-2 overexpressing (mOpsinhAng2) and deficient (Ang2LacZ) mice. RESULTS— Pericyte numbers were reduced by 16% (P < 0.01) in XLacZ mice after 6 months of diabetes. Reduction of pericytes was restricted to pericytes on straight capillaries (relative reduction 27%, P < 0.05) and was predominantly observed in LacZ-positive pericytes (−20%, P < 0.01). Hyperglycemia increased the numbers of migrating pericytes (69%; P < 0.05), of which the relative increase due to diabetes was exclusively in LacZ-negative pericytes, indicating reduced adherence to the capillaries (176%; P < 0.01). Overexpression of Ang-2 in nondiabetic retinas mimicked diabetic pericyte migration of wild-type animals (78%; P < 0.01). Ang-2 deficient mice completely lacked hyperglycemia-induced increase in pericyte migration compared with wild-type littermates. CONCLUSIONS— Diabetic pericyte loss is the result of pericyte migration, and this process is modulated by the Ang-Tie system.


Journal of The American Society of Nephrology | 2002

The Serum and Glucocorticoid-Inducible Kinase SGK1 and the Na+/H+ Exchange Regulating Factor NHERF2 Synergize to Stimulate the Renal Outer Medullary K+ Channel ROMK1

C. Chris Yun; Monica Palmada; Hamdy M. Embark; Olga Fedorenko; Yuxi Feng; Guido Henke; Iwan Setiawan; Christoph Boehmer; Edward J. Weinman; Sabrina Sandrasagra; Christoph Korbmacher; Philip Cohen; David A. Pearce; Florian Lang

Mineralocorticoids stimulate Na(+) reabsorption and K(+) secretion in principal cells of connecting tubule and collecting duct. The involved ion channels are ENaC and ROMK1, respectively. In Xenopus oocytes, the serum and glucocorticoid-sensitive kinase SGK1 has been shown to increase ENaC activity by enhancing its abundance in the plasma membrane. With the same method, ROMK1 appeared to be insensitive to regulation by SGK1. On the other hand, ROMK1 has been shown to colocalize with NHERF2, a protein mediating targeting and trafficking of transport proteins into the cell membrane. The present study has been performed to test whether NHERF2 is required for regulation of ROMK1 by SGK1. Coexpression of neither NHERF2 nor SGK1 with ROMK1 increases ROMK1 activity. However, coexpression of NHERF2 and SGK1 together with ROMK1 markedly increases K(+) channel activity. The combined effect of SGK1 and NHERF2 does not significantly alter the I/V relation of the channel but increases the abundance of the channel in the membrane and decreases the decay of channel activity after inhibition of vesicle insertion with brefeldin. Coexpression of NHERF2 and SGK1 does not modify cytosolic pH but leads to a slight shift of pK(a) of ROMK1 to more acidic values. In conclusion, NHERF2 and SGK1 interact to enhance ROMK1 activity in large part by enhancing the abundance of channel protein within the cell membrane. This interaction allows the integration of genomic regulation and activation of SGK1 and NHERF2 in the control of ROMK1 activity and renal K(+) excretion.


Hypertension | 2002

Serum- and Glucocorticoid-Regulated Kinase (SGK1) Gene and Blood Pressure

Andreas Busjahn; Atakan Aydin; Regina Uhlmann; Christine Krasko; Sylvia Bähring; Tamás Szelestei; Yuxi Feng; Stephan Dahm; Arya M. Sharma; Friedrich C. Luft; Florian Lang

The serum- and glucose-regulated kinase (SGK1) gene has recently been identified as an important aldosterone-induced protein kinase that mediates trafficking of the renal epithelial Na+ channel (ENaC) to the cell membrane. Thus, SGK1 is an appealing candidate for blood pressure regulation and possibly essential hypertension. To test this hypothesis, we recruited monozygotic (126 pairs) and dizygotic (70 pairs) normotensive twin subjects and parents of dizygotic twins. Blood pressure was measured in a controlled fashion: recumbent, sitting, and upright. We documented genetic variance on blood pressure in all positions. We then relied on microsatellite markers at the SGK1 gene locus (D6S472, D6S1038, and D6S270) and 2 single nucleotide polymorphisms within the SGK1 gene. We found significant linkage of the SGK1 gene locus to diastolic blood pressure (P <0.0002) and suggestive evidence for linkage for systolic blood pressure (P <0.04), documenting the locus as a quantitative trait locus for blood pressure. We next performed association, using all dizygotic twins and a monozygotic member from each pair. We found significant associations between both single nucleotide polymorphism variants and blood pressure, as well as a significant interaction between the single nucleotide polymorphisms enhancing the effect. This combined effect of the polymorphisms was confirmed in an independent sample of 260 young normotensive men. We conclude that the SGK1 gene is relevant to blood pressure regulation and probably to hypertension in man.


Thrombosis and Haemostasis | 2006

Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression

Yuxi Feng; Franziska vom Hagen; Frederick Pfister; Snezana Djokic; Sigrid Hoffmann; Walter Back; Patrick Wagner; J Lin; Urban Deutsch; Hans-Peter Hammes

Angiopoietin-2 (Ang2) is among the relevant growth factors induced by hypoxia and plays an important role in the initiation of retinal neovascularizations. Ang2 is also involved in incipient diabetic retinopathy, as it may cause pericyte loss. To investigate the impact of Ang2 on developmental and hypoxia-induced angiogenesis, we used a transgenic mouse line overexpressing human Ang2 in the mouse retina. Transgenic mice displayed a reduced coverage of capillaries with pericytes (-14%; p < 0.01) and a 46% increase of vascular density of the capillary network at postnatal day 10 compared to wild type mice. In the model of oxygen-induced retinopathy (OIR), Ang2 overexpression resulted in enhanced preretinal (+103%) and intraretinal neovascularization (+29%). Newly formed intraretinal vessels in OIR were also pericyte-deficient (-26%; p < 0.01). The total expression of Ang2 in transgenic mice was seven-fold, compared with wild type controls. Ang2 modulated expression of genes encoding VEGF (+65%) and Ang1 (+79%) in transgenic animals. These data suggest that Ang2 is involved in pericyte recruitment, and modulates intraretinal, and preretinal vessel formation in the eye under physiological and pathological conditions.


Cellular Physiology and Biochemistry | 2008

Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance.

Paul-Thomas Brinkkoetter; Hui Song; Ralf Lösel; Ulf Schnetzke; Uwe Gottmann; Yuxi Feng; C. Hanusch; G. Beck; Peter Schnuelle; Martin Wehling; Fokko J. van der Woude; Benito A. Yard

Background/Aims: Catecholamines prevent hypothermic cell death which accounts for severe tissue damage and impaired allograft function after prolonged organ preservation. Here, we identified cellular processes which govern hypothermia-mediated cell death in endothelial cells and how they are influenced by dopamine. Methods: Lactate dehydrogenase assay, intracellular ATP, reactive oxygen species and reduced thio-group measurement, intracellular calcium measurement and mitochondrial calcium staining were performed in the study. Results: Intracellular ATP was almost completely depleted within 12 hrs of hypothermic preservation in untreated human umbilical vein endothelial cells (HUVEC), while dopamine pre-treatment significantly delayed ATP depletion. 4 hrs after hypothermia a redox imbalance was observed in untreated cells, which increased with the duration of hypothermia. The redox imbalance was primarily caused by depletion of SH reduction equivalents and was significantly inhibited by dopamine. In addition, hypothermia-induced Ca2+ influx and mitochondrial Ca2+ accumulation were both prevented by dopamine. The protective effect of dopamine was abrogated by ionomycin and sodium azide and partly by oligomycin and CCCP. Conclusions: Our data demonstrated that loss of intracellular ATP, generation of a redox imbalance and accumulation of intracellular Ca2+ underlie cold preservation injury. Dopamine improves the redox balance, prevents intracellular Ca2+ accumulation and delays ATP depletion.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Inhibition of Rho-dependent kinases ROCK I/II activates VEGF-driven retinal neovascularization and sprouting angiogenesis

Jens Kroll; Daniel Epting; Katrin Kern; Christian Dietz; Yuxi Feng; Hans-Peter Hammes; Thomas Wieland; Hellmut G. Augustin

Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that activates the small GTPase RhoA. While the role of RhoA for VEGF-driven endothelial migration and angiogenesis has been studied in detail, the function of its target proteins, the Rho-dependent kinases ROCK I and II, are controversially discussed. Using the mouse model of oxygen-induced proliferative retinopathy, ROCK I/II inhibition by H-1152 resulted in increased angiogenesis. This enhanced angiogenesis, however, was completely blocked by the VEGF-receptor antagonist PTK787/ZK222584. Loss-of-function experiments in endothelial cells revealed that inhibition of ROCK I/II using the pharmacological inhibitor H-1152 and ROCK I/II-specific small-interfering RNAs resulted in a rise of VEGF-driven sprouting angiogenesis. These functional data were biochemically substantiated by showing an enhanced VEGF-receptor kinase insert domain receptor phosphorylation and extracellular signal-regulated kinase 1/2 activation after inhibition of ROCK I/II. Thus our data identify that the inhibition of Rho-dependent kinases ROCK I/II activates angiogenesis both, in vitro and in vivo.


Cellular Physiology and Biochemistry | 2011

Long-term Treatment with Suberythropoietic Epo is Vaso- and Neuroprotective in Experimental Diabetic Retinopathy

Qian Wang; Stefan Gorbey; Frederick Pfister; Simone Höger; Andrea Dorn-Beineke; Katja Krügel; Elena Berrone; Liang Wu; Thomas Korff; J Lin; Stefanie Busch; Andreas Reichenbach; Yuxi Feng; Hans-Peter Hammes

Background/Aims: Diabetic retinopathy is characterized by pericyte loss and vasoregression both in the clinic and in animal models. A mild neurodegeneration with loss of ganglion cells is also described in the diabetic retina. Like VEGF-A, Epo is angioprotective and, in high doses, neuroprotective, however, without affecting vessel permeability. This study was to investigate the effect of a long-term suberythropoietic dose of Epo on vascular damage and neurodegeneration in a rat model of diabetic retinopathy. Methods: We administered Epo 3x256 IU/kg body weight/week to streptozotocin-diabetic Wistar rats for up to 6 months. Leukostasis was analyzed by quantitation of CD45 positive cells adherent to the retinal microvasculature. VEGF-A levels were assessed by Elisa at 3 months of treatment. Vasoregression was quantified in retinal digest preparations after 6 months of Epo treatment. Neurodegeneration was analyzed from PAS stained retinal paraffin preparations. Results: Leukostasis was unaffected by treatment with Epo which significantly inhibited the loss of pericyte and the formation of acellular capillaries. Neurodegeneration in the diabetic retina was significantly reduced by Epo treatment. Increased VEGF-A levels in the diabetic retina were normalized by Epo treatment. Conclusions: Suberythropoietic Epo is effective to protect microvascular and neuronal damage in the experimental diabetic retina.


Cellular Signalling | 2012

Angiotensin II modulates VEGF-driven angiogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium

Javier Carbajo-Lozoya; Susanne Lutz; Yuxi Feng; Jens Kroll; Hans-Peter Hammes; Thomas Wieland

Vascular endothelial growth factor (VEGF) is a main stimulator of pathological vessel formation. Nevertheless, increasing evidence suggests that Angiotensin II (Ang II) can play an augmentory role in this process. We thus analyzed the contribution of the two Ang II receptor types, AT(1)R and AT(2)R, in a mouse model of VEGF-driven angiogenesis, i.e. oxygen-induced proliferative retinopathy. Application of the AT(1)R antagonist telmisartan but not the AT(2)R antagonist PD123,319 largely attenuated the pathological response. A direct effect of Ang II on endothelial cells (EC) was analyzed by assessing angiogenic responses in primary bovine retinal and immortalized rat microvascular EC. Selective stimulation of the AT(1)R by Ang II in the presence of PD123,319 revealed a pro-angiogenic activity which further increased VEGF-driven EC sprouting and migration. In contrast, selective stimulation of the AT(2)R by either CGP42112A or Ang II in the presence of telmisartan inhibited the VEGF-driven angiogenic response. Using specific inhibitors (pertussis toxin, RGS proteins, kinase inhibitors) we identified G(12/13) and G(i) dependent signaling pathways as the mediators of the AT(1)R-induced angiogenesis and the AT(2)R-induced inhibition, respectively. As AT(1)R and AT(2)R stimulation displays opposing effects on the activity of the monomeric GTPase RhoA and pro-angiogenic responses to Ang II and VEGF requires activation of Rho-dependent kinase (ROCK), we conclude that the opposing effects of the Ang II receptors on VEGF-driven angiogenesis converge on the regulation of activity of RhoA-ROCK-dependent EC migration.


PLOS ONE | 2009

Vasoregression Linked to Neuronal Damage in the Rat with Defect of Polycystin-2

Yuxi Feng; Yumei Wang; Oliver Stock; Frederick Pfister; Naoyuki Tanimoto; Mathias W. Seeliger; Jan-Luuk Hillebrands; Sigrid Hoffmann; Hartwig Wolburg; Norbert Gretz; Hans-Peter Hammes

Background Neuronal damage is correlated with vascular dysfunction in the diseased retina, but the underlying mechanisms remain controversial because of the lack of suitable models in which vasoregression related to neuronal damage initiates in the mature retinal vasculature. The aim of this study was to assess the temporal link between neuronal damage and vascular patency in a transgenic rat (TGR) with overexpression of a mutant cilia gene polycystin-2. Methods Vasoregression, neuroglial changes and expression of neurotrophic factors were assessed in TGR and control rats in a time course. Determination of neuronal changes was performed by quantitative morphometry of paraffin-embedded vertical sections. Vascular cell composition and patency were assessed by quantitative retinal morphometry of digest preparations. Glial activation was assessed by western blot and immunofluorescence. Expression of neurotrophic factors was detected by quantitative PCR. Findings At one month, number and thickness of the outer nuclear cell layers (ONL) in TGR rats were reduced by 31% (p<0.001) and 17% (p<0.05), respectively, compared to age-matched control rats. Furthermore, the reduction progressed from 1 to 7 months in TGR rats. Apoptosis was selectively detected in the photoreceptor in the ONL, starting after one month. Nevertheless, TGR and control rats showed normal responses in electroretinogram at one month. From the second month onwards, TGR retinas had significantly increased acellular capillaries (p<0.001), and a reduction of endothelial cells (p<0.01) and pericytes (p<0.01). Upregulation of GFAP was first detected in TGR retinas after 1 month in glial cells, in parallel with an increase of FGF2 (fourfold) and CNTF (60 %), followed by upregulation of NGF (40 %) at 3 months. Interpretation Our data suggest that TGR is an appropriate animal model for vasoregression related to neuronal damage. Similarities to experimental diabetic retinopathy render this model suitable to understand general mechanisms of maturity-onset vasoregression.

Collaboration


Dive into the Yuxi Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Lin

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge