Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuxian Xia is active.

Publication


Featured researches published by Yuxian Xia.


PLOS Genetics | 2011

Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

Qiang Gao; Kai Jin; Sheng-Hua Ying; Yongjun Zhang; Guohua Xiao; Yanfang Shang; Zhibing Duan; Xiao Xiao Hu; Xue-Qin Xie; Gang Zhou; Guoxiong Peng; Zhibing Luo; Wei Huang; Bing Wang; Weiguo Fang; Sibao Wang; Yi Zhong; Li-Jun Ma; Raymond J. St. Leger; Guoping Zhao; Yan Pei; Ming-Guang Feng; Yuxian Xia; Chengshu Wang

Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.


Development Growth & Differentiation | 2006

Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi

Zheng‐Bo He; Yueqing Cao; Youping Yin; Bin Chen; Guoxiong Peng; Yuxian Xia

In long germ embryos, all body segments are specified simultaneously during the blastoderm stage. In contrast, in short germ embryos, only the anterior segments are specified during the blastoderm stage, leaving the rest of the body plan to be specified later. The striking embryological differences between short and long germ segmentation imply fundamental differences in patterning at the molecular level. To gain insights into the segmentation mechanisms of short germ insects, we have investigated the role of the homologue of the Drosophila gap gene hunchback (hb) in a short germ insect Locusta migratoria manilensi by paternal RNA interference (RNAi). Phenotypes resulting from hb knockdown were categorized into three classes based on severity. In the most extreme case, embryos developed the most anterior structures only, including the labrum, antennae and eyes. The following conclusions were drawn: (i) L. migratoria manilensis hb (Lmm’hb) controls germ band morphogenesis and segmentation in the anterior region; (ii) Lmm’hb may function as a gap gene in a wide domain including the entire gnathum and thorax; and (iii) Lmm’hb is required for proper growth of the posterior germ band. These findings suggest a more extensive role for L. migratoria manilensis hunchback in anterior patterning than those described in Drosophila.


Development Growth & Differentiation | 2007

Cloning of a novel protease required for the molting of Locusta migratoria manilensis

Zhang Wei; Youping Yin; Basheng Zhang; Guoxiong Peng; Yueqing Cao; Yuxian Xia

Molting is required for progression between larval stages in the life cycle of an insect. The essence of insect molting is the laying down of new cuticle followed by shedding of the old cuticle. Degradation and recycling of old cuticle are brought about by enzymes present in the molting fluid, which fills the space between the old and new cuticle. Here, we describe the cloning of a novel protease gene from Locusta migratoria manilensis, designated as Lm‐TSP. The cDNA and its deduced protein sequences were deposited in GenBank (accession numbers EF081255 and ABN13876, respectively). Sequence analysis indicated that Lm‐TSP belongs to the trypsin‐like serine protease family. We show, by RNA interference (RNAi), that silencing of Lm‐TSP leads to dramatic reductions in protease and cuticle‐degrading activity of a molting fluid, which leads to molting defects from fourth‐instar larvae (L4) to fifth‐instar larvae (L5), and between L5 and adult stages. These observations suggest that Lm‐TSP plays a critical role in L. migratoria manilensis ecdysis.


Applied and Environmental Microbiology | 2011

Contribution of the gas1 Gene of the Entomopathogenic Fungus Beauveria bassiana, Encoding a Putative Glycosylphosphatidylinositol-Anchored β-1,3-Glucanosyltransferase, to Conidial Thermotolerance and Virulence

Shizhu Zhang; Yuxian Xia; Nemat O. Keyhani

ABSTRACT Beauveria bassiana is a mycoinsecticide alternative to chemicals for use in biological pest control. The fungus-insect interaction is also an emerging model system to examine unique aspects of the development, pathogenesis, and diversity of fungal lifestyles. The glycoside hydrolase 72 (GH72) family includes β-1,3-glucanosyltransferases that are glycosylphosphatidylinositol (GPI)-anchored cell wall-modeling enzymes affecting fungal physiology. A putative B. bassiana GPI-anchored β-1,3-glucanosyltransferase (Bbgas1) was isolated and characterized. B. bassiana targeted gene knockouts lacking Bbgas1 were affected in Congo red and salt sensitivity but displayed minor growth defects in the presence of sorbitol, SDS, or calcofluor white. Lectin and antibody mapping of surface carbohydrates revealed increased exposure of carbohydrate epitopes, including β-1,3-glucans, in the ΔBbgas1 strain. Transmission electron micrographs revealed localized destabilization of the cell wall in ΔBbgas1 conidia, in which fraying of the outer cell wall was apparent. Heat shock temperature sensitivity profiling showed that in contrast to the wild-type parent, ΔBbgas1 conidial spores displayed decreased germination after 1 to 4 h of heat shock at temperatures >40°C, and propidium iodide exclusion assays revealed decreased membrane stability in the knockout strain at temperatures >50°C. The ΔBbgas1 knockout showed reduced virulence in Galleria mellonella insect bioassays in both topical and intrahemocoel-injection assays. B. bassiana ΔBbgas1 strains complemented with the complete Bbgas1 open reading frame were indistinguishable from the wild-type parent in all phenotypes examined. The Bbgas1 gene did not complement the phenotype of a Saccharomyces cerevisiae β-1,3-glucanosyltransferase Δgas1 mutant, indicating that this family of enzymes likely posses discrete cellular functions.


BMC Microbiology | 2011

Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum

Yajun Leng; Guoxiong Peng; Yueqing Cao; Yuxian Xia

BackgroundThe entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl) hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering.ResultsWe selected four Ntl over-expression and four Ntl RNA interference (RNAi) transformations in which Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore, virulence was not altered in the two types of mutants compared to the wild type.ConclusionsNtl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi without affecting virulence.


Current Microbiology | 2008

Analysis of the Intestinal Microflora in Hepialus gonggaensis Larvae Using 16S rRNA Sequences

Hewei Yu; Li Liu; Yuxian Xia; Yueqing Cao; Youping Yin

Gut microbial diversity provides insight into the basic function of a gut microbial ecosystem. In this study, restriction fragment length polymorphism 16S rRNA sequences was used to detect the intestinal microbial diversity of Hepialus gonggaensis larvae. The total DNA of microorganisms was extracted from the intestinal contents and 16S rRNA was amplified. A nearly full-length of 16S rRNA sequence library was constructed. The fingerprints of the microorganisms were analyzed by isolating plasmid and then digesting them with EcoRI, MspI, and HaeIII enzymes, respectively. The library established includes 35 restriction endonuclease types and a phylogenetic tree depicted the linkage of the isolated microbial from the guts of H. gonggaensis larvae. The dominant bacteria in the guts of H. gonggaensis larvae belong to Rahnella sp and Carnobacterium sp and accounted for 45.58% and 30.88% of the total 16S rRNA clones library, respectively. The result showed that bacteria diversity in the guts of H. gonggaensis larvae had some differences from those isolated from normal environment.


Journal of Invertebrate Pathology | 2010

Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae.

Jing Liu; Yueqing Cao; Yuxian Xia

Microcycle conidiation is a survival mechanism for some fungi encountering unfavorable conditions, in which asexual spores germinate secondary spores directly without formation of mycelium. Here, we isolated a microcycle conidiation associated gene, Mmc, from Metarhizium anisopliae and obtained its full length of cDNA and DNA sequence. To clarify its roles in conidiation, we constructed an Mmc RNA interference (RNAi) vector with dual promoter system to knockdown Mmc transcript level, and then analyzed RNAi mutant phenotypes. On microcycle conidiation medium, the RNAi mutant performed normal conidiation instead of microcycle conidiation with significantly reduced growth speed and conidia yield of 5.29-fold and 3.18-fold lower, respectively, than that of the wild-type. Meanwhile, on normal conidiation medium, no significant difference was found in conidiation speed and total yield between the wild-type and RNAi mutant. These data demonstrated that the Mmc gene regulated microcycle conidiation but did not affect normal conidiation. In addition, results of heat treatment, UV-B radiation and bioassays of RNAi mutant indicated that Mmc was also involved in heat resistance but irrelevant to UV-B tolerance and virulence of M. anisopliae. This study helped understanding the regulation of sporulation of the entomopathogenic fungus M. anisopliae.


Environmental Microbiology | 2013

The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum

Sha Luo; Min He; Yueqing Cao; Yuxian Xia

In most eukaryotes, tetraspanins regulate cellular activities by associating with other membrane components. In phytopathogenic fungi, the tetraspanin Pls1 controls appressorium-mediated penetration. However, regulation of Pls1 and its associated signalling pathways are not clear. In this study, the MaPls1 gene from the entomopathogenic fungus Metarhizium acridum was functionally characterized. MaPls1 was highly expressed in mycelium and appressorium, and accumulated on the plasma membrane or in the cytoplasm. Compared with a wild-type strain, the deletion mutant ΔMaPls1 had delayed germination and appressorium formation and impaired turgor pressure on locust wings, but normal germination on medium and non-host insect matrices. Bioassays showed that ΔMaPls1 had decreased virulence and hyphal body formation in haemolymph when topically inoculated, but was not different from wild type when the insect cuticle was bypassed. Moreover, the ability to grow out of the cuticle was impaired in ΔMaPls1. Digital gene expression profiling revealed that genes involved in hydrolysing host cuticle and cell wall synthesis and remodelling were downregulated in ΔMaPls1. MaPls1 participated in crosstalk with signalling pathways such as the cyclic adenosine monophosphate-dependent protein kinase A and calmodulin-dependent pathways. Taken together, these results demonstrated the important roles of MaPls1 at the early stage of infection-associated development in M. acridum.


Journal of Invertebrate Pathology | 2014

MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum

Kai Jin; Lirong Han; Yuxian Xia

Entomopathogenic fungi have great potential for development as insecticides. However, large-scale use of mycoinsecticides is partially limited by poor efficiency. In many fungal pathogens, the yeast and fungal extracellular signal-regulated kinase (YERK1) subfamily is crucial to the fungal pathogenicity. In this study, a Fus3/Kss1-type mitogen-activated protein kinase (MAPK) gene MaMk1 (GenBank accession No. EFY93607) was identified in Metarhizium acridum, which encodes a member of the YERK1 subfamily. Targeted gene disruption was used to analyze the function of MaMk1 in fungal growth, conidial yield and virulence. Growth assays showed that MaMk1 disruption did not affect fungal growth and conidial yield on potato dextrose agar (PDA) plates. Bioassays by topical inoculation showed that a MaMk1-disruption mutant entirely lost its pathogenicity for the locusts, likely because of failure to penetrate the insect cuticle, which might have been caused by inability to form appressoria during infection. However, bioassays by injection showed no significant difference in virulence among the wild type (WT), ΔMaMk1 mutant and complementary transformant. ΔMaMk1 mutant failed to penetrate the cuticle outwards and sporulate on the locust cadaver. These results suggest that MaMk1 is required for penetration of the insect cuticle both into the hemocele and outside from the hemocele, but is dispensable for fungal growth in insect hemolymph. Gene expression pattern analysis showed that MaMk1 disruption downregulated expression of Mad1 and Mpl1, but did not reduce expression of Pr1 in M. acridum.


Journal of Bioscience and Bioengineering | 2009

Trehalose-6-phosphate synthase 1 from Metarhizium anisopliae: clone, expression and properties of the recombinant

Zejun Cai; Guoxiong Peng; Yueqing Cao; Yinchun Liu; Kai Jin; Yuxian Xia

Trehalose, an important component in fungal spores, is a disaccharide which protects against several environmental stresses, such as heat, desiccation, salt. Trehalose-6-phosphate synthase 1 (TPS1) is a subunit of trehalose synthase complex in fungi; it plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Metarhizium anisopliae encoding TPS1 (designated as MaTPS1) was isolated. The MaTPS1 cDNA is composed of 1836 nucleotides encoding a protein of 517 amino acids with a molecular mass of 58 kDa. The amino acid sequence has a relatively high homology with the TPS1s in several other filamentous fungi. Southern blot analysis showed that MaTPS1 gene occurs as a single copy in the M. anisopliae genome. And MaTPS1 was cloned into Pichia pastoris KM71 and secretively expressed with a histamine tag to facilitate a rapid purification of recombinant MaTPS1 (designated reTPS1). The properties of reTPS1 were examined. The K(m) value of reTPS1 for UDP-glucose and glucose-6-phosphate was 9.6 mM and 3.9 mM, respectively, and the optimal pH and temperature were about 6.5 and 40 degrees C. The enzyme was highly specific to glucose-6-phosphate for glucosyl acceptor, and its activity decreased rapidly as the concentrations of phosphate increased. The expression system will provide sufficient amounts of reTPS1 for future structural characterization of the protein and use for further investigation of MaTPS1s function.

Collaboration


Dive into the Yuxian Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Jin

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Zhao

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Run Jiao

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Hewei Yu

Chongqing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge