Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuxin Yang is active.

Publication


Featured researches published by Yuxin Yang.


Scientific Reports | 2015

Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system

Xiaolong Wang; Honghao Yu; Anmin Lei; Jiankui Zhou; Wenxian Zeng; Haijing Zhu; Zhiming Dong; Yiyuan Niu; Bingbo Shi; Bei Cai; Jinwang Liu; Shuai Huang; Hailong Yan; Xiaoe Zhao; Guangxian Zhou; Xiaoling He; Xiaoxu Chen; Yuxin Yang; Yu Jiang; Lei Shi; Xiue Tian; Yongjun Wang; Baohua Ma; Xingxu Huang; Lei Qu; Yulin Chen

Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, the applicability and efficiency of this method in large animal models, such as the goat, have not been extensively studied. Here, by co-injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes (MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% respectively, and 10% for double gene modifications. The on- and off-target mutations of the target genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were carefully analyzed. The results showed that simultaneous editing of several sites was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust and efficient gene engineering tool in farm animals, and therefore will be critically important and applicable for breeding.


Gene | 2014

Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep

Xiaolong Wang; Guangxian Zhou; Xiaochun Xu; Rongqing Geng; Jiping Zhou; Yuxin Yang; Zhaoxia Yang; Yulin Chen

Recent studies in domestic animals have used RNA-seq to explore the transcriptome of different tissues in a limited number of individuals. In the present study, de novo transcriptome sequencing was used to compare sheep adipose tissue transcriptome profiles between a fat-tailed breed (Kazak sheep; KS) and a short-tailed (Tibetan sheep; TS). The RNA-seq data from these two groups revealed that 646 genes were differentially expressed between the KS and TS groups, including 280 up-regulated and 366 down-regulated genes. We identified genes relevant to fat metabolism in adipose tissues, including two top genes with the largest fold change (NELL1 and FMO3). Pathway analysis revealed that the differentially expressed genes between the KS and TS breeds belong to fatty acid metabolism relevant pathways (e.g. fat digestion and absorption, glycine, serine, and threonine metabolism) and cell junction-related pathways (e.g. cell adhesion molecules) which contribute to fat deposition. This work highlighted potential genes and gene networks that affect fat deposition and meat quality in sheep.


PLOS ONE | 2015

Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing.

Xufeng Han; Yuxin Yang; Hailong Yan; Xiaolong Wang; Lei Qu; Yulin Chen

The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host’s health and improve animal performance.


BioMed Research International | 2017

Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep

Guangxian Zhou; Xiaolong Wang; Chao Yuan; Danju Kang; Xiaochun Xu; Jiping Zhou; Rongqing Geng; Yuxin Yang; Zhaoxia Yang; Yulin Chen

MicroRNAs (miRNAs) are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS) and thin-tailed (Tibetan sheep, TS) sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO) biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep.


Brazilian Journal of Microbiology | 2015

Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

Xufeng Han; Lei Wang; Wei Li; Bibo Li; Yuxin Yang; Hailong Yan; Lei Qu; Yulin Chen

The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.


BMC Genomics | 2018

Integrative analysis reveals ncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goats

Guangxian Zhou; Danju Kang; Sen Ma; Xingtao Wang; Ye Gao; Yuxin Yang; Xiaolong Wang; Yulin Chen

BackgroundCashmere is a keratinized product derived from the secondary hair follicles (SHFs) of cashmere goat skins. The cashmere fiber stops growing following the transition from the actively proliferating anagen stage to the apoptosis-driven catagen stage. However, little is known regarding the molecular mechanisms responsible for the occurrence of apoptosis in SHFs, especially as pertains to the role of non-coding RNAs (ncRNAs) and their interactions with other molecules. Hair follicle (HF) degeneration is caused by localized apoptosis in the skin, while anti-apoptosis pathways may coexist in adjacent HFs. Thus, elucidating the molecular interactions responsible for apoptosis and anti-apoptosis in the skin will provide insights into HF regression.ResultsWe used multiple-omics approaches to systematically identify long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs expressed in cashmere goat skins in two crucial phases (catagen vs. anagen) of HF growth. Skin samples were collected from three cashmere goats at the anagen (September) and catagen (February) stages, and six lncRNA libraries and six miRNA libraries were constructed for further analysis. We identified 1122 known and 403 novel lncRNAs in the goat skins, 173 of which were differentially expressed between the anagen and catagen stages. We further identified 3500 gene-encoding transcripts that were differentially expressed between these two phases. We also identified 411 known miRNAs and 307 novel miRNAs, including 72 differentially expressed miRNAs. We further investigated the target genes of lncRNAs via both cis- and trans-regulation during HF growth. Our data suggest that lncRNAs and miRNAs act synergistically in the HF growth transition, and the catagen inducer factors (TGFβ1 and BDNF) were regulated by miR-873 and lnc108635596 in the lncRNA-miRNA-mRNA networks.ConclusionThis study enriches the repertoire of ncRNAs in goats and other mammals, and contributes to a better understanding of the molecular mechanisms of ncRNAs involved in the regulation of HF growth and regression in goats and other hair-producing species.


Scientific Reports | 2017

Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep

Danju Kang; Guangxian Zhou; Shiwei Zhou; Jie Zeng; Xiaolong Wang; Yu Jiang; Yuxin Yang; Yulin Chen

Adipose tissues are phenotypically, metabolically and functionally heterogeneous based on the sites of their deposition. Undesirable fat deposits in the body are often detrimental to animal and human health. To unravel the potential underlying mechanisms governing accumulation of adipose tissues in various regions of the body, i.e., subcutaneous (SAT), visceral (VAT) and tail (TAT), we profiled transcriptomes from Tan sheep, a Chinese indigenous breed with notable fat tail using RNA-seq. Upon comparison, we identified a total of 1,058 differentially expressed genes (DEGs) between the three adipose types (218, 324, and 795 in SAT/VAT, SAT/TAT, and VAT/TAT, respectively), from which several known key players were identified that are involved in lipid metabolic process, Wnt signals, Vitamin A metabolism, and transcriptional regulation of adipocyte differentiation. We also found that many elevated genes in VAT were notably enriched for key biological processes such as cytokine secretion, signaling molecule interaction and immune systems. Several developmental genes including HOXC11, HOXC12 and HOXC13, and adipose-expressed genes in the tail region, such as HOTAIR_2, HOTAIR_3 and SP9 were specially highlighted, indicating their strong associations with tail fat development in fat-tailed sheep. Our results provide new insight into exploring the specific fat deposition in tail, also contribute to the understanding of differences between adipose depots.


Animal and Veterinary Sciences | 2018

Regional Assessment of the Virtual Water of Sheep and Goats in Arid Areas

Ke Zhang; Chao Li; Wen Bao; Mengmeng Guo; Qi Zhang; Yuxin Yang; Qifang Kou; Wenrui Gao; Xiaolong Wang; Zhaoxia Yang; Yulin Chen

The increased consumption of livestock products is likely to put further pressure on the world’s freshwater resources, an agricultural virtual water strategy will alleviate the water resources pressure of livestock husbandry, especially in arid areas. The research on the virtual water requirement of living animals is still blank in China. Most of the researches on the virtual water of animal products in China adopt foreign data and there is some error with the actual situation in China. In this study, the virtual water requirements of sheep and goats (n=80) in North China were evaluated and validated. Factors that affect animals’ virtual water requirements and the water supply for sheep and goat management were analyzed. We found that the virtual water productivity in sheep at five growth stages (40-day-old [D40], 6-month [M6], 12-month-old [M12], 24-month-old [M24], and 36-month-old [M36]) was lower than that in goats. The amount of virtual water requirements was 496.07 m 3 from birth to M36 in sheep and was 217.14 m 3 in goats. The water consumes were estimated to be 9 019.4 m 3 /t in sheep and 4 825.3m 3 /t in goats. The virtual water requirement for feed accounted for more than 99% of the total water consumption. Daily water consumption in rams is larger than that in ewes. We found that the crop type and yield, the proportion of high water consumption feed raw material in complete diet pellets, as well as the flock structure are the three major factors influencing virtual water demand in animals. Our results provided strategies to reduce water consumption in animal husbandry industries in arid areas, and further show that the crop import trade strategies can be used to increase the import of high water-consuming crops, instead of the virtual water consumption of the sheep and goat industry output, thereby alleviating the pressure on local water resources.


South African Journal of Botany | 2013

Differential gene expression analysis of ‘Granny Smith’ apple (Malus domestica Borkh.) during fruit skin coloration

Xiaojun Zhang; Lixin Wang; Yulian Liu; X.X. Chen; Yuxin Yang; Z.Y. Zhao


Applied Microbiology and Biotechnology | 2017

Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep

Yaoyue Wang; Pinghua Cao; Lei Wang; Zhaoyan Zhao; Yulin Chen; Yuxin Yang

Collaboration


Dive into the Yuxin Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge