Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuze Lin is active.

Publication


Featured researches published by Yuze Lin.


Advanced Materials | 2015

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin; Jiayu Wang; Zhi-Guo Zhang; Huitao Bai; Yongfang Li; Daoben Zhu; Xiaowei Zhan

A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion efficiencies of up to 6.8%, a record for fullerene-free PSCs.


Materials horizons | 2014

Non-fullerene acceptors for organic photovoltaics: an emerging horizon

Yuze Lin; Xiaowei Zhan

Although fullerenes and their derivatives, such as PCBM, have been the dominant electron-acceptor materials in organic photovoltaic cells (OPVs), they suffer from some disadvantages, such as weak absorption in the visible spectral region, limited spectral breadth and difficulty in variably tuning the band gap. It is necessary to explore non-fullerene electron acceptors that will not only retain the favorable electron-accepting and transporting properties of fullerenes but also overcome their insufficiencies. After a decade of mediocrity, non-fullerene acceptors are undergoing rapid development and are emerging as a hot area of focus in the field of organic semiconductors. Solution-processed bulk heterojunction (BHJ) OPVs based on non-fullerene acceptors have shown encouraging power conversion efficiencies of over 4%. This article reviews recent developments in several classes of solution-processable non-fullerene acceptors for BHJ OPVs. The remaining problems and challenges along with the key research directions in the near future are discussed.


Journal of the American Chemical Society | 2016

High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics

Yuze Lin; Fuwen Zhao; Qiao He; Lijun Huo; Yang Wu; Timothy C. Parker; Wei Ma; Yanming Sun; Chunru Wang; Daoben Zhu; Alan J. Heeger; Seth R. Marder; Xiaowei Zhan

We develop an efficient fused-ring electron acceptor (ITIC-Th) based on indacenodithieno[3,2-b]thiophene core and thienyl side-chains for organic solar cells (OSCs). Relative to its counterpart with phenyl side-chains (ITIC), ITIC-Th shows lower energy levels (ITIC-Th: HOMO = -5.66 eV, LUMO = -3.93 eV; ITIC: HOMO = -5.48 eV, LUMO = -3.83 eV) due to the σ-inductive effect of thienyl side-chains, which can match with high-performance narrow-band-gap polymer donors and wide-band-gap polymer donors. ITIC-Th has higher electron mobility (6.1 × 10(-4) cm(2) V(-1) s(-1)) than ITIC (2.6 × 10(-4) cm(2) V(-1) s(-1)) due to enhanced intermolecular interaction induced by sulfur-sulfur interaction. We fabricate OSCs by blending ITIC-Th acceptor with two different low-band-gap and wide-band-gap polymer donors. In one case, a power conversion efficiency of 9.6% was observed, which rivals some of the highest efficiencies for single junction OSCs based on fullerene acceptors.


Journal of the American Chemical Society | 2016

A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency

Yuze Lin; Qiao He; Fuwen Zhao; Lijun Huo; Jiangquan Mai; Xinhui Lu; Chun-Jen Su; Tengfei Li; Jiayu Wang; Jingshuai Zhu; Yanming Sun; Chunru Wang; Xiaowei Zhan

A planar fused-ring electron acceptor (IC-C6IDT-IC) based on indacenodithiophene is designed and synthesized. IC-C6IDT-IC shows strong absorption in 500-800 nm with extinction coefficient of up to 2.4 × 10(5) M(-1) cm(-1) and high electron mobility of 1.1 × 10(-3) cm(2) V(-1) s(-1). The as-cast polymer solar cells based on IC-C6IDT-IC without additional treatments exhibit power conversion efficiencies of up to 8.71%.


Energy and Environmental Science | 2015

High-performance fullerene-free polymer solar cells with 6.31% efficiency

Yuze Lin; Zhi-Guo Zhang; Huitao Bai; Jiayu Wang; Yuehan Yao; Yongfang Li; Daoben Zhu; Xiaowei Zhan

A nonfullerene electron acceptor (IEIC) based on indaceno[1,2-b:5,6-b′]dithiophene and 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile was designed and synthesized. IEIC exhibited good thermal stability, strong absorption in the 500–750 nm region with an extinction coefficient of 1.1 × 105 M−1 cm−1 at 672 nm, deep LUMO energy level (−3.82 eV) close to those of fullerenes, and a relatively high electron mobility of 2.1 × 10−4 cm2 V−1 s−1. Fullerene-free polymer solar cells (PSCs) based on the blends of the IEIC acceptor and a low-bandgap polymer donor PTB7-TH, using a perylene diimide derivative as a cathode interlayer, showed power conversion efficiencies (PCEs) of up to 6.31%, which is among the best PCEs reported for fullerene-free PSCs.


Accounts of Chemical Research | 2016

Oligomer Molecules for Efficient Organic Photovoltaics

Yuze Lin; Xiaowei Zhan

Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability, and film-forming properties. Therefore, OMs are a good choice for solution-processed reproducible OSCs toward scalable commercialized applications. Considerable efforts have been dedicated to developing new OM electron donors and electron acceptors for OSCs. So far, the highest PCEs of solution-processed OSCs based on OM donors and acceptors are 9-10% and 6-7%, respectively. OM materials have become promising alternatives to polymer and/or fullerene materials for efficient and stable OSCs. In this Account, we present a brief survey of the recent developments in solution-processable OM electron donors and acceptors and their application in OSCs. Rational design of OMs with star- and linear-shaped structures based on triphenylamine, benzodithiophene, and indacenodithiophene units and their impacts on device performance are discussed. Structure-property relationships are also proposed. Furthermore, the remaining challenges and the key research directions in the near future are also addressed. In the next years, an interdisciplinary approach involving novel OM materials, especially electron acceptor materials, accurate morphology optimization, and advanced device technologies will probably bring high-efficiency and stable OSCs to final commercialization.


Advanced Materials | 2014

A Star‐Shaped Perylene Diimide Electron Acceptor for High‐Performance Organic Solar Cells

Yuze Lin; Yifan Wang; Jiayu Wang; Jianhui Hou; Yongfang Li; Daoben Zhu; Xiaowei Zhan

A novel nonplanar star-shaped perylene diimide acceptor with a triphenylamine core (S(TPA-PDI)) is explored and applied in solution-processed organic solar cells. These solar cells exhibit an encouraging power conversion efficiency of up to 3.32%.


Advanced Materials | 2017

Mapping Polymer Donors toward High-Efficiency Fullerene Free Organic Solar Cells.

Yuze Lin; Fuwen Zhao; Yang Wu; Kai Chen; Yuxin Xia; Guangwu Li; Shyamal K. K. Prasad; Jingshuai Zhu; Lijun Huo; Haijun Bin; Zhi-Guo Zhang; Xia Guo; Maojie Zhang; Yanming Sun; Feng Gao; Zhixiang Wei; Wei Ma; Chunru Wang; Justin M. Hodgkiss; Zhishan Bo; Olle Inganäs; Yongfang Li; Xiaowei Zhan

Five polymer donors with distinct chemical structures and different electronic properties are surveyed in a planar and narrow-bandgap fused-ring electron acceptor (IDIC)-based organic solar cells, which exhibit power conversion efficiencies of up to 11%.


Advanced Materials | 2012

Thiazole‐Based Organic Semiconductors for Organic Electronics

Yuze Lin; Haijun Fan; Yongfang Li; Xiaowei Zhan

Over the past two decades, organic semiconductors have been the subject of intensive academic and commercial interests. Thiazole is a common electron-accepting heterocycle due to electron-withdrawing nitrogen of imine (C=N), several moieties based on thiazole have been widely introduced into organic semiconductors, and yielded high performance in organic electronic devices. This article reviews recent developments in the area of thiazole-based organic semiconductors, particularly thiazole, bithiazole, thiazolothiazole and benzobisthiazole-based small molecules and polymers, for applications in organic field-effect transistors, solar cells and light-emitting diodes. The remaining problems and challenges, and the key research direction in near future are discussed.


Advanced Materials | 2017

π-Conjugated Lewis Base: Efficient Trap-Passivation and Charge-Extraction for Hybrid Perovskite Solar Cells

Yuze Lin; Liang Shen; Jun Dai; Yehao Deng; Yang Wu; Yang Bai; Xiaopeng Zheng; Jiayu Wang; Yanjun Fang; Haotong Wei; Wei Ma; Xiao Cheng Zeng; Xiaowei Zhan; Jinsong Huang

A π-conjugated Lewis base is introduced into perovskite solar cells, namely, indacenodithiophene end-capped with 1.1-dicyanomethylene-3-indanone (IDIC), as a multifunctional interlayer, which combines efficient trap-passivation and electron-extraction. Perovskite solar cells with IDIC layers yield higher photovoltages and photocurrents, and 45% enhanced efficiency compared with control devices without IDIC.

Collaboration


Dive into the Yuze Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongfang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daoben Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pei Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Ma

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Yang Wu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Chunru Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fuwen Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuixing Dai

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge