Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuzhang Li is active.

Publication


Featured researches published by Yuzhang Li.


Nature Nanotechnology | 2015

A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries

Jie Sun; Hyun-Wook Lee; Mauro Pasta; Hongtao Yuan; Guangyuan Zheng; Yuzhang Li; Yi Cui

Sodium-ion batteries have recently attracted significant attention as an alternative to lithium-ion batteries because sodium sources do not present the geopolitical issues that lithium sources might. Although recent reports on cathode materials for sodium-ion batteries have demonstrated performances comparable to their lithium-ion counterparts, the major scientific challenge for a competitive sodium-ion battery technology is to develop viable anode materials. Here we show that a hybrid material made out of a few phosphorene layers sandwiched between graphene layers shows a specific capacity of 2,440 mA h g(-1) (calculated using the mass of phosphorus only) at a current density of 0.05 A g(-1) and an 83% capacity retention after 100 cycles while operating between 0 and 1.5 V. Using in situ transmission electron microscopy and ex situ X-ray diffraction techniques, we explain the large capacity of our anode through a dual mechanism of intercalation of sodium ions along the x axis of the phosphorene layers followed by the formation of a Na3P alloy. The presence of graphene layers in the hybrid material works as a mechanical backbone and an electrical highway, ensuring that a suitable elastic buffer space accommodates the anisotropic expansion of phosphorene layers along the y and z axial directions for stable cycling operation.


ACS Nano | 2015

Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes

Zhenda Lu; Nian Liu; Hyun-Wook Lee; Jie Zhao; Weiyang Li; Yuzhang Li; Yi Cui

Silicon is widely recognized as one of the most promising anode materials for lithium-ion batteries due to its 10 times higher specific capacity than graphite. Unfortunately, the large volume change of Si materials during their lithiation/delithiation process results in severe pulverization, loss of electrical contact, unstable solid-electrolyte interphase (SEI), and eventual capacity fading. Although there has been tremendous progress to overcome these issues through nanoscale materials design, improved volumetric capacity and reduced cost are still needed for practical application. To address these issues, we design a nonfilling carbon-coated porous silicon microparticle (nC-pSiMP). In this structure, porous silicon microparticles (pSiMPs) consist of many interconnected primary silicon nanoparticles; only the outer surface of the pSiMPs was coated with carbon, leaving the interior pore structures unfilled. Nonfilling carbon coating hinders electrolyte penetration into the nC-pSiMPs, minimizes the electrode-electrolyte contact area, and retains the internal pore space for Si expansion. SEI formation is mostly limited to the outside of the microparticles. As a result, the composite structure demonstrates excellent cycling stability with high reversible specific capacity (∼1500 mAh g(-1), 1000 cycles) at the rate of C/4. The nC-pSiMPs contain accurate void space to accommodate Si expansion while not losing packing density, which allows for a high volumetric capacity (∼1000 mAh cm(-3)). The areal capacity can reach over 3 mAh cm(-2) with the mass loading 2.01 mg cm(-2). Moreover, the production of nC-pSiMP is simple and scalable using a low-cost silicon monoxide microparticle starting material.


Nano Letters | 2015

Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers

Wei Liu; Nian Liu; Jie Sun; Po-Chun Hsu; Yuzhang Li; Hyun-Wook Lee; Yi Cui

Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.


ACS central science | 2015

In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

Wei Chen; Haotian Wang; Yuzhang Li; Yayuan Liu; Jie Sun; Sanghan Lee; Jang-Soo Lee; Yi Cui

The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications.


Advanced Materials | 2016

Entrapment of Polysulfides by a Black-Phosphorus-Modified Separator for Lithium-Sulfur Batteries.

Jie Sun; Mauro Pasta; Guangmin Zhou; Yuzhang Li; Wei Liu; Feng Xiong; Yi Cui

A bifunctional separator modified by black-phosphorus nanoflakes is prepared to overcome the challenges associated with the polysulfide diffusion in lithium-sulfur batteries. It brings the benefits of the entrapment of various sulfur species via the strong binding energy and re-activation of the trapped sulfur species due to its high electron conductivity as well as Li-ion diffusivity.


Nano Letters | 2017

Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal

Allen Pei; Guangyuan Zheng; Feifei Shi; Yuzhang Li; Yi Cui

Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g-1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a critical fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.


Science | 2016

Direct and continuous strain control of catalysts with tunable battery electrode materials.

Haotian Wang; Shicheng Xu; Charlie Tsai; Yuzhang Li; Chong Liu; Jie Zhao; Yayuan Liu; Hongyuan Yuan; Frank Abild-Pedersen; Fritz B. Prinz; Jens K. Nørskov; Yi Cui

Tuning nanoparticle strain The catalytic activity of metals in heterogeneous catalysts can be altered by applying strain, which changes the crystalline lattice spacing and modifies the metals electronic properties. Wang et al. show how particles of cobalt oxide, a positive electrode for lithium batteries, can expand or contract with charging and transfer strain to adsorbed platinum nanoparticles. For the oxygen reduction reaction used in fuel cells, compressive strain boosted activity by 90%, and tensile strain decreased it by 40%. Science, this issue p. 1031 The expansion or contraction of lithium electrode particles with charging transfers strain to platinum nanoparticles. We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-corrected transmission electron microscopy. We observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.


Science | 2017

Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy

Yuzhang Li; Yanbin Li; Allen Pei; Kai Yan; Chun-Lan Wu; Lydia-Marie Joubert; Richard Chin; Ai Leen Koh; Yi Yu; John Perrino; Benjamin Butz; Steven Chu; Yi Cui

Frozen in time The electrochemical processes occurring in a battery are highly dynamic. To understand the complexities of the charge and discharge cycles, you need to be able to watch the processes in situ or to freeze the battery rapidly for ex situ analysis. Li et al. applied cryo–electron microscopy techniques commonly used for studying biological samples to examine batteries. They identified the solid electrolyte interphase that forms, observed the interactions of Li with the interphase, and captured the formation of dendrites that can be detrimental to the lifetime of a battery. Science, this issue p. 506 Cryo–electron microscopy can preserve reactive metals and thus reveal the atomic structure of a lithium metal dendrite. Whereas standard transmission electron microscopy studies are unable to preserve the native state of chemically reactive and beam-sensitive battery materials after operation, such materials remain pristine at cryogenic conditions. It is then possible to atomically resolve individual lithium metal atoms and their interface with the solid electrolyte interphase (SEI). We observe that dendrites in carbonate-based electrolytes grow along the <111> (preferred), <110>, or <211> directions as faceted, single-crystalline nanowires. These growth directions can change at kinks with no observable crystallographic defect. Furthermore, we reveal distinct SEI nanostructures formed in different electrolytes.


Nature Nanotechnology | 2017

Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

Jie Zhao; Guangmin Zhou; Kai Yan; Jin Xie; Yuzhang Li; Lei Liao; Yang Jin; Kai Liu; Po Chun Hsu; Jiangyan Wang; Hui-Ming Cheng; Yi Cui

Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.


Science Advances | 2017

Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework

Hansen Wang; Dingchang Lin; Yayuan Liu; Yuzhang Li; Yi Cui

Overlithiation of mesoporous AlF3 framework enables ultrahigh–current density Li metal anodes. Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al4Li9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al4Li9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zero volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm−2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. The simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.

Collaboration


Dive into the Yuzhang Li's collaboration.

Top Co-Authors

Avatar

Yi Cui

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun-Wook Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge