Yuzheng Zhao
East China University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuzheng Zhao.
Cell Metabolism | 2011
Yuzheng Zhao; Jing Jin; Qingxun Hu; Hai-Meng Zhou; Jing Yi; Zhenhang Yu; Lei Xu; Xue Wang; Yi Yang; Joseph Loscalzo
We have developed genetically encoded fluorescent sensors for reduced nicotinamide adenine dinucleotide (NADH), which manifest a large change in fluorescence upon NADH binding. We demonstrate the utility of these sensors in mammalian cells by monitoring the dynamic changes in NADH levels in subcellular organelles as affected by NADH transport, glucose metabolism, electron transport chain function, and redox environment, and we demonstrate the temporal separation of changes in mitochondrial and cytosolic NADH levels with perturbation. These results support the view that cytosolic NADH is sensitive to environmental changes, while mitochondria have a strong tendency to maintain physiological NADH homeostasis. These sensors provide a very good alternative to existing techniques that measure endogenous fluorescence of intracellular NAD(P)H and, owing to their superior sensitivity and specificity, allow for the selective monitoring of total cellular and compartmental responses of this essential cofactor.
The EMBO Journal | 2015
Hui Yang; Lisha Zhou; Qian Shi; Yuzheng Zhao; Huaipeng Lin; Mengli Zhang; Shimin Zhao; Yi Yang; Zhi Qiang Ling; Kun-Liang Guan; Yue Xiong; Dan Ye
The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection.
Nature Protocols | 2016
Yuzheng Zhao; Aoxue Wang; Yejun Zou; Ni Su; Joseph Loscalzo; Yi Yang
NADH and its oxidized form NAD+ have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD+/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD+ or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism.
Nature Methods | 2017
Rongkun Tao; Yuzheng Zhao; Huanyu Chu; Aoxue Wang; Jiahuan Zhu; Xianjun Chen; Yejun Zou; Mei Shi; Renmei Liu; Ni Su; Jiu-lin Du; Hai-Meng Zhou; Linyong Zhu; Xuhong Qian; Haiyan Liu; Joseph Loscalzo; Yi Yang
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD+ kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo. These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.
Current Opinion in Biotechnology | 2015
Yuzheng Zhao; Yi Yang
NADH and its oxidized form, NAD(+), play central roles in energy metabolism and are ideal indicators of cellular metabolic states. In this review, we will introduce recent progress made in the developing of a series of genetically encoded NADH sensors, which offer the potential to fill the gap in currently used techniques of endogenous NAD(P)H fluorescence imaging. These sensors are bright, specific and organelles targetable, allowing real-time tracking and quantification of intracellular NADH levels in different subcellular compartments. The individual strengths and weaknesses of these sensors when applied to the study of metabolic states profiling will be also discussed.
Nature Communications | 2016
Kai Yang; Ming Wang; Yuzheng Zhao; Xuxu Sun; Yi Yang; Xie Li; Aiwu Zhou; Huilin Chu; Hu Zhou; Jianrong Xu; Mian Wu; Jie Yang; Jing Yi
The nucleolus has been recently described as a stress sensor. The nucleoplasmic translocation of nucleolar protein nucleophosmin (NPM1) is a hallmark of nucleolar stress; however, the causes of this translocation and its connection to p53 activation are unclear. Using single live-cell imaging and the redox biosensors, we demonstrate that nucleolar oxidation is a general response to various cellular stresses. During nucleolar oxidation, NPM1 undergoes S-glutathionylation on cysteine 275, which triggers the dissociation of NPM1 from nucleolar nucleic acids. The C275S mutant NPM1, unable to be glutathionylated, remains in the nucleolus under nucleolar stress. Compared with wild-type NPM1 that can disrupt the p53–HDM2 interaction, the C275S mutant greatly compromises the activation of p53, highlighting that nucleoplasmic translocation of NPM1 is a prerequisite for stress-induced activation of p53. This study elucidates a redox mechanism for the nucleolar stress sensing and may help the development of therapeutic strategies.
Free Radical Biology and Medicine | 2016
Yuzheng Zhao; Yi Yang
Mitochondria are central organelles that regulate cellular bioenergetics, biosynthesis, and signaling processes. NADH, a key player in cell metabolism, is often considered as a marker of mitochondrial function. However, traditional methods for NADH measurements are either destructive or unable to distinguish between NADH and NADPH. In contrast to traditional methods, genetically encoded NADH sensors can be used for the real-time tracking and quantitative measurement of subcellular NADH levels in living cells. Therefore, these sensors provide innovative tools and address the limitations of current techniques. We herein summarize the properties of different types of recently developed NADH biosensors, discuss their advantages and disadvantages, and focus on the high-throughput analysis of mitochondrial function by using highly responsive NAD+/NADH sensors.
Bioengineered bugs | 2012
Yuzheng Zhao; Yi Yang
Reduced nicotinamide adenine dinucleotide (NADH) and its oxidized form play central roles in energy and redox metabolisms. For many years, researchers have relied on the weak NADH endogenous fluorescence signal to determine the NADH level in living cells. We recently reported a series of genetically encoded fluorescent sensors highly specific for NADH. These sensors allow real-time, quantitative measurement of this significant molecule in different subcellular compartments. In this study, we provide a more detailed discussion of the benefits and limitations of these genetically encoded fluorescent sensors. These sensors are utilized in most laboratories without the need for sophisticated instruments because of their superior sensitivity and specificity. They are also viable alternatives to existing techniques for measuring the endogenous fluorescence of intracellular NAD(P)H.
Cell Research | 2017
Yujiang Fang; Zhongliang Liu; Zhenyu Chen; Xiangjie Xu; Mengtao Xiao; Yanyan Yu; Yuanyuan Zhang; Xiaobai Zhang; Yanhua Du; Cizhong Jiang; Yuzheng Zhao; Yiran Wang; Beibei Fan; Daniel Terheyden-Keighley; Yang Liu; Lei Shi; Yi Hui; Xin Zhang; Bowen Zhang; Hexi Feng; Lin Ma; Quanbin Zhang; Guohua Jin; Yi Yang; Bin Xiang; Ling Liu; Xiaoqing Zhang
Both environmental cues and intracellular bioenergetic states profoundly affect intracellular pH (pHi). How a cell responds to pHi changes to maintain bioenergetic homeostasis remains elusive. Here we show that Smad5, a well-characterized downstream component of bone morphogenetic protein (BMP) signaling responds to pHi changes. Cold, basic or hypertonic conditions increase pHi, which in turn dissociates protons from the charged amino acid clusters within the MH1 domain of Smad5, prompting its relocation from the nucleus to the cytoplasm. On the other hand, heat, acidic or hypotonic conditions decrease pHi, blocking the nuclear export of Smad5, and thus causing its nuclear accumulation. Active nucleocytoplasmic shuttling of Smad5 induced by environmental changes and pHi fluctuation is independent of BMP signaling, carboxyl terminus phosphorylation and Smad4. In addition, ablation of Smad5 causes chronic and irreversible dysregulation of cellular bioenergetic homeostasis and disrupted normal neural developmental processes as identified in a differentiation model of human pluripotent stem cells. Importantly, these metabolic and developmental deficits in Smad5-deficient cells could be rescued only by cytoplasmic Smad5. Cytoplasmic Smad5 physically interacts with hexokinase 1 and accelerates glycolysis. Together, our findings indicate that Smad5 acts as a pHi messenger and maintains the bioenergetic homeostasis of cells by regulating cytoplasmic metabolic machinery.
PLOS ONE | 2015
Jianhua Wang; Yuzheng Zhao; Chao Wang; Qian Zhu; Zengmin Du; Aiguo Hu; Yi Yang
Nitric oxide (NO) is a membrane-permeable signaling molecule that is constantly produced, transferred, and consumed in vivo. NO participates and plays important roles in multiple biological processes. However, spatiotemporal imaging of NO in living cells is challenging. To fill the gap in currently used techniques, we exploited the versatility of HaloTag technology and synthesized a novel organelle-targetable fluorescent probe called HTDAF-2DA. We demonstrate the utility of the probe by monitoring subcellular NO dynamics. The developed strategy enables precise determination of local NO function.