Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuzhou Liu is active.

Publication


Featured researches published by Yuzhou Liu.


PLOS ONE | 2012

The expression levels of plasma micoRNAs in atrial fibrillation patients.

Zheng Liu; Cheng Zhou; Yuzhou Liu; Sihua Wang; Ping Ye; Xiaoping Miao; Jiahong Xia

Background MicroRNA (miRNA) has been found in human blood. It has been increasingly suggested that miRNAs may serve as biomarkers for diseases. We examined the potential of circulating miRNA to serve as predictors of atrial fibrillation (AF). Methodology/Principal Findings During the discovery stage of this project, we used massively parallel signature sequencing (MPSS) to carry out an in-depth analysis of the miRNA expression profile (miRNome) in 5 healthy controls, 5 patients with paroxysmal atrial fibrillation (PAF) alone, and 5 patients with persistent atrial fibrillation (PersAF) alone. Twenty-two specific miRNAs were found to be dysregulated in each PAF group, PersAF group, or control group. Four candidate microRNAs (miRNA-146a, miRNA-150, miRNA-19a, and miRNA-375) met our selection criteria and were evaluated in an independent cohort of 90 plasma samples using TaqMan miRNA quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR). We found miRNA-150 levels to be reduced by a factor of approximately 17 in PAF relative to controls and a factor of approximately 20 in PersAF relative to controls (P<.0001). Logistic regression analyses were carried out to evaluate the reduced miRNA-150 expression levels (odds ratio [OR] 1.96, 95% confidence interval [CI] 1.5 to 3.57, P<0.001), age (OR 1.1, 95% CI 1.36 to 2.73, P<0.001), and Left atrial diameter (LAD) (OR 1.5, 95% CI 1.36 to 1.8, P<0.001). Each was independently associated with AF. Much of the identified target genes related to AF were part of the inflammatory response system. We found that plasma levels of CRP were negatively correlated with the plasma levels of miRNA-150. Conclusions/Significance In summary, we firstly found that plasma miRNA-150 levels in from AF patients were substantially lower than that from healthy people. Circulating reduced miRNA-150 was significantly associated with AF.


Cellular Physiology and Biochemistry | 2016

Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are Promising Novel Biomarkers for Early Diagnosis of Acute Myocardial Infarction

Kejing Wang; Xin Zhao; Yuzhou Liu; Qiutang Zeng; Xiaobo Mao; Songnan Li; Ming Zhang; Chao Jiang; You Zhou; Cheng Qian; Kaige Feng; Hongquan Guan; Ting-Ting Tang; Xiang Cheng; Zhijian Chen

Background/Aims: Recent studies have shown that circulating microRNAs (miRNAs) are emerging as promising biomarkers for cardiovascular diseases. This study aimed to determine whether miR-19b-3p, miR-134-5p and miR-186-5p can be used as novel indicators for acute myocardial infarction (AMI). Methods: To investigate the kinetic expression of the three selected miRNAs, we enrolled 18 patients with AMI and 20 matched controls. Plasma samples were collected from each participant, and total RNA was extracted. Quantitative real-time PCR and ELISA assays were used to investigate the expression of circulating miRNAs and cardiac troponin I (cTnI), respectively. Plasma samples from another age- and gender-matched cohort were collected to investigate the impact of medications for AMI on the expression of the selected miRNAs. Results: Levels of plasma miR-19b-3p, miR-134-5p and miR-186-5p were significantly increased in early stage of AMI. Plasma miR-19b-3p and miR-134-5p levels reached peak expression immediately after admission (T0), whereas miR-186-5p achieved peak expression at 4 h after T0. All of these times were earlier than the peak for cTnI (8 h after T0). In addition, all three miRNAs were positively correlated with cTnI. Receiver Operating Characteristic (ROC) analysis indicated that each single miRNA showed considerable diagnostic efficiency for predicting AMI. Furthermore, combining all three miRNAs in a panel increased the efficiency of distinguishing between patients with AMI and controls. Moreover, we found that heparin and medications for AMI did not impact the expression of these circulating miRNAs. Conclusion: Circulating miR-19b-3p, miR-134-5p and miR-186-5p could be considered promising novel diagnostic biomarkers for the early phase of AMI.


Clinical and Experimental Immunology | 2016

Intranasal immunization with heat shock protein 60 induces CD4(+) CD25(+) GARP(+) and type 1 regulatory T cells and inhibits early atherosclerosis.

Yucheng Zhong; Hongxia Tang; Xiang Wang; Qiutang Zeng; Yuzhou Liu; Xiaoqi Zhao; Kunwu Yu; Huairui Shi; Ruirui Zhu; Xiaobo Mao

Atherosclerosis is an autoimmune inflammatory disease involving both innate and adaptive immune mechanisms. Immune tolerance induction may have therapeutic potential for the suppression of atherosclerosis. Current interest is directed towards mucosal tolerance induction, especially nasal tolerance. Previous studies have shown that heat shock protein 60 (HSP60) is recognized as an important autoantigen in atherosclerosis, and nasal or oral HSP60 can induce tolerance and ameliorate atherosclerosis by inducing several subsets of regulatory T cells (Tregs) such as latency‐associated peptide (LAP)+ and forkhead box transcription factor 3 (FoxP3)+ Tregs. However, little is known regarding the detailed mechanisms of nasal tolerance. Here, we again investigated the impact of nasal HSP60 on atherosclerosis and the mechanisms underlying the anti‐atherosclerosis responses. We found that nasal HSP60 caused a significant 33·6% reduction in plaque size at the aortic root in the early stages of atherosclerosis (P < 0·001). Notably, a significant increase in activated CD4+CD25+ glycoprotein A repetitions predominant (GARP)+ Tregs, type 1 Tregs (Tr1 cells), and CD4+CD25+FoxP3+ Tregs, as well as a marked decrease in the numbers of type 1 and 17 T helper cells was detected in the spleens and cervical lymph nodes of HSP60‐treated mice. Moreover, nasal HSP60 increases the production of transforming growth factor (TGF)‐β and interleukin (IL)‐10 and decreases the secretion of IFN‐γ and IL‐17. Interestingly, the atheroprotective role of nasal HSP60 treatment was abrogated partly by the neutralization of IL‐10. Our findings show that nasal administration of HSP60 can attenuate atherosclerotic formation by inducing GARP+ Tregs, Tr1 cells and FoxP3+ Tregs, and that these Tregs maintain immune homeostasis by secreting IL‐10 and TGF‐β.


Cellular Physiology and Biochemistry | 2015

Heme Oxygenase-1 Restores Impaired GARP+CD4+CD25+ Regulatory T Cells from Patients with Acute Coronary Syndrome by Upregulating LAP and GARP Expression on Activated T Lymphocytes

Yuzhou Liu; Xiaoqi Zhao; Yucheng Zhong; Kai Meng; Kunwu Yu; Huairui Shi; Bangwei Wu; Hasahya Tony; Jianghao Zhu; Ruirui Zhu; Yudong Peng; Yi Mao; Peng Cheng; Xiaobo Mao; Qiutang Zeng

Background: Accumulating evidence shows that the pathological autoreactive immune response is responsible for plaque rupture and the subsequent onset of acute coronary syndrome (ACS). Naturally occurring CD4+CD25+regulatory T cells (nTregs) are indispensable in suppressing the pathological autoreactive immune response and maintaining immune homeostasis. However, the number and the suppressive function of glycoprotein-A repetitions predominant (GARP) + CD4+ CD25+ activated nTregs were impaired in patients with ACS. Recent evidence suggests that heme oxygenase-1 (HO-1) can regulate the adaptive immune response by promoting the expression of Foxp3. We therefore hypothesized that HO-1 may enhance the function of GARP+ CD4+ CD25+Tregs in patients with ACS and thus regulate immune imbalance. Methods: T lymphocytes were isolated from healthy volunteers (control, n=30) and patients with stable angina (SA, n=40) or ACS (n=51). Half of these cells were treated with an HO-1 inducer (hemin) for 48 h, and the other half were incubated with complete RPMI-1640 medium. The frequencies of T-helper 1 (Th1), Th2, Th17 and latency-associated peptide (LAP) +CD4+ T cells and the expression of Foxp3 and GARP by CD4+CD25+T cells were then assessed by measuring flow cytometry after stimulation in vitro. The suppressive function of activated Tregs was measured by thymidine uptake. The levels of transforming growth factor-1 (TGF-β1) in the plasma were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of the genes encoding these proteins were analyzed by real-time polymerase chain reaction. Results: Patients with ACS exhibited an impaired number and suppressive function of GARP+ CD4+ CD25+Tregs and a mixed Th1/Th17-dominant T cell response when compared with the SA and control groups. The expression of LAP in T cells was also lower in patients with ACS compared to patients with SA and the control individuals. Treatment with an HO-1 inducer enhanced the biological activity of GARP+ CD4+ CD25+Tregs and resulted in increased expression of LAP and GARP by activated T cells. Conclusions: The reduced number and impaired suppressive function of GARP+ CD4+ CD25+Tregs result in excess effector T cell proliferation, leading to plaque instability and the onset of ACS. HO-1 can effectively restore impaired GARP+ CD4+ CD25+Tregs from patients with ACS by promoting LAP and GARP expression on activated T cells.


Cellular Physiology and Biochemistry | 2014

Impairment of Circulating CD4 + CD25 + GARP + Regulatory T Cells in Patients with Acute Coronary Syndrome

Kai Meng; Wei Zhang; Yucheng Zhong; Xiaobo Mao; Yingzhong Lin; Ying Huang; Mingjian Lang; Yudong Peng; Zhengfeng Zhu; Yuzhou Liu; Xiaoqi Zhao; Kunwu Yu; Bangwei Wu; Qingwei Ji; Qiutang Zeng

Background: Atherosclerosis (AS) is an inflammatory and immune disease. Regulatory T cells (Tregs) suppress the activation of T cells and have been shown to play a protective role during the pathogenesis of AS. However, specific markers for Tregs are lacking. Recently, glycoprotein A repetitions predominant (GARP) was discovered as a specific marker of activated Tregs, and we therefore utilized GARP as a specific surface marker for Tregs in the current study. Methods: To assess whether GARP+ Tregs are downregulated in patients with acute coronary syndrome (ACS), we examined CD4+CD25+GARP+ T cell frequencies as well as their associated cytokines and suppressive function. Additionally, we compared GARP expression to that of FOXP3, which may be more sensitive as a marker of activated Tregs in patients with ACS. Results: Patients with ACS demonstrated a significant decrease in circulating CD4+CD25+GARP+ Tregs. Moreover, the suppressive function of Tregs and levels of related cytokines were also impaired in ACS patients compared to those with stable angina (SA) or normal coronary artery (NCA). Additionally, after TCR stimulation, peripheral blood mononuclear cells (PBMCs) from patients with ACS exhibited a decrease in CD4+CD25+GARP+ Tregs. Conclusions: These fnding indicate that circulating CD4+CD25+GARP+ Tregs are impaired in patients withACS. Thus, targeting GARP may promote the protective function of Tregs in ACS.


Scientific Reports | 2017

Exogenous interleukin 37 ameliorates atherosclerosis via inducing the Treg response in ApoE-deficient mice

Qingwei Ji; Kai Meng; Kunwu Yu; Song Huang; Ying Huang; Xiaohong Min; Yucheng Zhong; Bangwei Wu; Yuzhou Liu; Shao-Ping Nie; Jianwei Zhang; Yujie Zhou; Qiutang Zeng

Our previous study indicated that interleukin (IL)-37 is involved in atherosclerosis. In the present study, Anterior tibial arteries were collected from diabetes patients and controls. A histopathological analysis showed that IL-37 was over-expressed in human atherosclerotic plaques. Many types of cells including macrophages, vascular smooth muscle cells (VSMCs), endothelial cells and T lymphocyte expressed IL-37 in human atherosclerotic plaques. ApoE−/− mice were divided into a control group and a recombinant human IL-37-treated group. The IL-37 treatment resulted in a significant decrease in macrophages and CD4+ T lymphocytes and a substantial increase in VSMCs and collagen in atherosclerotic plaques, resulting in a reduction in atherosclerotic plaque size. Furthermore, the IL-37 treatment modulated the CD4+ T lymphocyte activity, including a decrease in T helper cell type 1 (Th1) and Th17 cells and an increase in regulatory T (Treg) cells, and inhibited the maturity of dendritic cells both in vivo and in vitro. In addition, treatment with anti-IL-10 receptor monoclonal antibody abrogated the anti-atherosclerotic effects of IL-37. These data suggest that exogenous IL-37 ameliorates atherosclerosis via inducing the Treg response. IL-37 may be a novel therapeutic to prevent and treat atherosclerotic disease.


Journal of the American Heart Association | 2016

Interleukin‐37 and Dendritic Cells Treated With Interleukin‐37 Plus Troponin I Ameliorate Cardiac Remodeling After Myocardial Infarction

Ruirui Zhu; Haitao Sun; Kunwu Yu; Yucheng Zhong; Huairui Shi; Yuzhen Wei; Xin Su; Wenbin Xu; Quan Luo; Fangyuan Zhang; Zheng-Feng Zhu; Kai Meng; Xiaoqi Zhao; Yuzhou Liu; Yi Mao; Peng Cheng; Xiaobo Mao; Qiutang Zeng

Background Excessive immune‐mediated inflammatory reactions play a deleterious role in postinfarction ventricular remodeling. Interleukin‐37 (IL‐37) emerges as an inhibitor of both innate and adaptive immunity. However, the exact role of IL‐37 and IL‐37 plus troponin I (TnI)–treated dendritic cells (DCs) in ventricular remodeling after myocardial infarction (MI) remains elusive. Methods and Results MI was induced by permanent ligation of the left anterior descending artery. Our results showed that treatment with recombinant human IL‐37 significantly ameliorated ventricular remodeling after MI, as demonstrated by decreased infarct size, better cardiac function, lower mortality, restricted inflammatory responses, decreased myocardial fibrosis, and inhibited cardiomyocyte apoptosis. In vitro, we examined the phenotype of IL‐37 plus TnI–conditioned DCs of male C57BL/6 mice and their capacity to influence the number of regulatory T cells. Our results revealed that IL‐37 plus TnI–conditioned DCs obtained the characteristics of tolerogenic DCs (tDCs) and expanded the number of regulatory T cells when co‐cultured with splenic CD4+ T cells. Interestingly, we also found that adoptive transfer of these antigen‐loaded tDCs markedly increased the number of regulatory T cells in the spleen, attenuated the infiltration of inflammatory cells in the infarct hearts, decreased myocardial fibrosis, and improved cardiac function. Conclusions Our results reveal a beneficial role of IL‐37 or tDCs treated with IL‐37 plus TnI in post‐MI remodeling that is possibly mediated by reestablishing a tolerogenic immune response, indicating that IL‐37 or adoptive transfer of IL‐37 plus TnI–treated tDCs may be a novel therapeutic strategy for ventricular remodeling after MI.


British Journal of Pharmacology | 2016

Digoxin reduces atherosclerosis in apolipoprotein E-deficient mice

Huairui Shi; Xiaobo Mao; Yucheng Zhong; Yuzhou Liu; Xiaoqi Zhao; Kunwu Yu; Ruirui Zhu; Yuzhen Wei; Jianghao Zhu; Haitao Sun; Yi Mao; Qiutang Zeng

Numerous in vitro studies have suggested that digoxin suppresses inflammation and alters lipid metabolism. However, the effect of dioxin on atherosclerosis is poorly understood. The present study was conducted to determine whether digoxin affects the development of atherosclerosis in a murine model of atherosclerotic disease.


Atherosclerosis | 2015

Disruption of the TSLP-TSLPR-LAP signaling between epithelial and dendritic cells through hyperlipidemia contributes to regulatory T-Cell defects in atherosclerotic mice

Kunwu Yu; Qian Dong; Xiaobo Mao; Kai Meng; Xiaoqi Zhao; Qingwei Ji; Bangwei Wu; Yucheng Zhong; Zheng-Feng Zhu; Yuzhou Liu; Wei Zhang; Hasahya Tony; Huairui Shi; Qiutang Zeng

Regulatory T-Cells (Tregs) play a protective role against the development of atherosclerosis. Moreover, thymic stromal lymphopoietin (TSLP)/thymic stromal lymphopoietin receptor (TSLPR) signaling in myeloid dendritic cells (DCs) promote Treg differentiation. Here, we examined the potential role of TSLP/TSLPR on Treg homeostasis in atherosclerosis. The frequencies of both latency-associated peptide (LAP)(+) and Foxp3(+) Tregs were reduced in the thymus and spleen of ApoE(-/-) mice compared with C57BL/6 mice, and this effect was associated with decreased thymic output. The tolerogenic function of DCs obtained from ApoE(-/-) mice was compromised compared with those from C57BL/6 mice. The expression of TSLP and TSLPR was also inhibited in ApoE(-/-) mice. In addition, we found that ox-LDL attenuated TSLP expression in cultured thymic epithelial cells (TECs) through the activation of retinoid X receptor alpha (RXRA) and IL-1β and decreased LAP and PD-L1 expression in oxLDL-activated DCs while both were up-regulated in TSLP-activated DCs. We also observed that the TSLP-DCs mediated differentiation of Tregs was abrogated through LAP neutralization. Furthermore, TSLP injection rescued Treg defects in ApoE(-/-) mice. These findings suggest that Treg defects in ApoE(-/-) mice might partially be attributed to the disruption of TSLP-TSLPR-LAP signaling in epithelial cells (ECs) and DCs.


Mediators of Inflammation | 2015

Atorvastatin Improves Inflammatory Response in Atherosclerosis by Upregulating the Expression of GARP

Xiaoqi Zhao; Yuzhou Liu; Yucheng Zhong; Bo Liu; Kunwu Yu; Huairui Shi; Ruirui Zhu; Kai Meng; Wei Zhang; Bangwei Wu; Qiutang Zeng

Regulatory T cells play an important role in the progression of atherosclerosis. GARP is a newly biological membrane molecule existed on activated Tregs, which is related to the release of TGF-β. The antiatherosclerosis effects of statins partly depend on their multiple immune modulatory potencies. In this paper, we present that atorvastatin could upregulate the expression of GARP and TGF-β in CD4+ T cells and increase the numbers of CD4+LAP+ and CD4+Foxp3+ regulatory T cells in ApoE−/− mice. Also, we indicate that atorvastatin promotes the aggregation of GARP+ and Foxp3+ cells and secretory of the TGF-β1 in atherosclerotic plaques. Furthermore, we prove that atorvastatin could delay the procession of atherosclerosis and improve the stability of atherosclerotic plaques. Interestingly, we report that inhibition of GARP distinctly inhibits the anti-inflammatory effects of atorvastatin. We conclude that atorvastatin improves the inflammatory response in atherosclerosis partly by upregulating the expression of GARP on regulatory T cells.

Collaboration


Dive into the Yuzhou Liu's collaboration.

Top Co-Authors

Avatar

Qiutang Zeng

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kunwu Yu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Mao

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yucheng Zhong

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaoqi Zhao

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Huairui Shi

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kai Meng

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ruirui Zhu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bangwei Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yi Mao

Huazhong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge