Yvan Zivanovic
University of Paris-Sud
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yvan Zivanovic.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Qunxin She; Rama K. Singh; Fabrice Confalonieri; Yvan Zivanovic; Ghislaine Allard; Mariana J. Awayez; Christina C.-Y. Chan-Weiher; Ib Groth Clausen; Bruce A. Curtis; Anick De Moors; G. Erauso; Cynthia Fletcher; Paul M. K. Gordon; Ineke Heikamp-de Jong; Alex C. Jeffries; Catherine Kozera; Nadine Medina; Xu Peng; Hoa Phan Thi-Ngoc; Peter Redder; Margaret E. Schenk; Cynthia Theriault; Niels Tolstrup; Robert L. Charlebois; W. Ford Doolittle; Michel Duguet; Terry Gaasterland; Roger A. Garrett; Mark A. Ragan; Christoph W. Sensen
The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.
Molecular Microbiology | 2003
Georges N. Cohen; Valérie Barbe; Didier Flament; Michael Y. Galperin; Roland Heilig; Odile Lecompte; Olivier Poch; Daniel Prieur; Joël Querellou; Raymond Ripp; Jean-Claude Thierry; John van der Oost; Jean Weissenbach; Yvan Zivanovic; Patrick Forterre
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re‐annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.
Genome Biology | 2005
Céline Brochier; Simonetta Gribaldo; Yvan Zivanovic; Fabrice Confalonieri; Patrick Forterre
BackgroundCultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis. The recently described hyperthermophile Nanoarchaeum equitans, harboring the smallest cellular genome ever sequenced (480 kb), has been suggested as the representative of a new phylum - the Nanoarchaeota - that would have diverged before the Crenarchaeota/Euryarchaeota split. Confirming the phylogenetic position of N. equitans is thus crucial for deciphering the history of the archaeal domain.ResultsWe tested the placement of N. equitans in the archaeal phylogeny using a large dataset of concatenated ribosomal proteins from 25 archaeal genomes. We indicate that the placement of N. equitans in archaeal phylogenies on the basis of ribosomal protein concatenation may be strongly biased by the coupled effect of its above-average evolutionary rate and lateral gene transfers. Indeed, we show that different subsets of ribosomal proteins harbor a conflicting phylogenetic signal for the placement of N. equitans. A BLASTP-based survey of the phylogenetic pattern of all open reading frames (ORFs) in the genome of N. equitans revealed a surprisingly high fraction of close hits with Euryarchaeota, notably Thermococcales. Strikingly, a specific affinity of N. equitans and Thermococcales was strongly supported by phylogenies based on a subset of ribosomal proteins, and on a number of unrelated molecular markers.ConclusionWe suggest that N. equitans may more probably be the representative of a fast-evolving euryarchaeal lineage (possibly related to Thermococcales) than the representative of a novel and early diverging archaeal phylum.
Genome Biology | 2009
Yvan Zivanovic; Jean Armengaud; Arnaud Lagorce; Christophe Leplat; Philippe P. Guerin; Murielle Dutertre; Véronique Anthouard; Patrick Forterre; Patrick Wincker; Fabrice Confalonieri
BackgroundThermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis.ResultsT. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis.ConclusionsThis work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes.
The ISME Journal | 2011
Achim Quaiser; Yvan Zivanovic; David Moreira; Purificación López-García
To extend comparative metagenomic analyses of the deep-sea, we produced metagenomic data by direct 454 pyrosequencing from bathypelagic plankton (1000 m depth) and bottom sediment of the Sea of Marmara, the gateway between the Eastern Mediterranean and the Black Seas. Data from small subunit ribosomal RNA (SSU rRNA) gene libraries and direct pyrosequencing of the same samples indicated that Gamma- and Alpha-proteobacteria, followed by Bacteroidetes, dominated the bacterial fraction in Marmara deep-sea plankton, whereas Planctomycetes, Delta- and Gamma-proteobacteria were the most abundant groups in high bacterial-diversity sediment. Group I Crenarchaeota/Thaumarchaeota dominated the archaeal plankton fraction, although group II and III Euryarchaeota were also present. Eukaryotes were highly diverse in SSU rRNA gene libraries, with group I (Duboscquellida) and II (Syndiniales) alveolates and Radiozoa dominating plankton, and Opisthokonta and Alveolates, sediment. However, eukaryotic sequences were scarce in pyrosequence data. Archaeal amo genes were abundant in plankton, suggesting that Marmara planktonic Thaumarchaeota are ammonia oxidizers. Genes involved in sulfate reduction, carbon monoxide oxidation, anammox and sulfatases were over-represented in sediment. Genome recruitment analyses showed that Alteromonas macleodii ‘surface ecotype’, Pelagibacter ubique and Nitrosopumilus maritimus were highly represented in 1000 m-deep plankton. A comparative analysis of Marmara metagenomes with ALOHA deep-sea and surface plankton, whale carcasses, Peru subsurface sediment and soil metagenomes clustered deep-sea Marmara plankton with deep-ALOHA plankton and whale carcasses, likely because of the suboxic conditions in the deep Marmara water column. The Marmara sediment clustered with the soil metagenome, highlighting the common ecological role of both types of microbial communities in the degradation of organic matter and the completion of biogeochemical cycles.
Applied and Environmental Microbiology | 2002
Soizick Lucas; Laurent Toffin; Yvan Zivanovic; Daniel Charlier; Hélène Moussard; Patrick Forterre; Daniel Prieur; Gaël Erauso
ABSTRACT Our understanding of the genetics of species of the best-studied hyperthermophilic archaea, Pyrococcus spp., is presently limited by the lack of suitable genetic tools, such as a stable cloning vector and the ability to select individual transformants on plates. Here we describe the development of a reliable host-vector system for the hyperthermophilic archaeon Pyrococcus abyssi. Shuttle vectors were constructed based on the endogenous plasmid pGT5 from P. abyssi strain GE5 and the bacterial vector pLitmus38. As no antibiotic resistance marker is currently available for Pyrococcus spp., we generated a selectable auxotrophic marker. Uracil auxotrophs resistant to 5-fluoorotic acid were isolated from P. abyssi strain GE9 (devoid of pGT5). Genetic analysis of these mutants revealed mutations in the pyrE and/or pyrF genes, encoding key enzymes of the pyrimidine biosynthetic pathway. Two pyrE mutants exhibiting low reversion rates were retained for complementation experiments. For that purpose, the pyrE gene, encoding orotate phosphoribosyltransferase (OPRTase) of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius, was introduced into the pGT5-based vector, giving rise to pYS2. With a polyethylene glycol-spheroplast method, we could reproducibly transform P. abyssi GE9 pyrE mutants to prototrophy, though with low frequency (102 to 103 transformants per μg of pYS2 plasmid DNA). Transformants did grow as well as the wild type on minimal medium without uracil and showed comparable OPRTase activity. Vector pYS2 proved to be very stable and was maintained at high copy number under selective conditions in both Escherichia coli and P. abyssi.
Current Biology | 2017
Rafael I. Ponce-Toledo; Philippe Deschamps; Purificación López-García; Yvan Zivanovic; Karim Benzerara; David Moreira
Photosynthesis evolved in eukaryotes by the endosymbiosis of a cyanobacterium, the future plastid, within a heterotrophic host. This primary endosymbiosis occurred in the ancestor of Archaeplastida, a eukaryotic supergroup that includes glaucophytes, red algae, green algae, and land plants [1-4]. However, although the endosymbiotic origin of plastids from a single cyanobacterial ancestor is firmly established, the nature of that ancestor remains controversial: plastids have been proposed to derive from either early- or late-branching cyanobacterial lineages [5-11]. To solve this issue, we carried out phylogenomic and supernetwork analyses of the most comprehensive dataset analyzed so far including plastid-encoded proteins and nucleus-encoded proteins of plastid origin resulting from endosymbiotic gene transfer (EGT) of primary photosynthetic eukaryotes, as well as wide-ranging genome data from cyanobacteria, including novel lineages. Our analyses strongly support that plastids evolved from deep-branching cyanobacteria and that the present-day closest cultured relative of primary plastids is Gloeomargarita lithophora. This species belongs to a recently discovered cyanobacterial lineage widespread in freshwater microbialites and microbial mats [12, 13]. The ecological distribution of this lineage sheds new light on the environmental conditions where the emergence of photosynthetic eukaryotes occurred, most likely in a terrestrial-freshwater setting. The fact that glaucophytes, the first archaeplastid lineage to diverge, are exclusively found in freshwater ecosystems reinforces this hypothesis. Therefore, not only did plastids emerge early within cyanobacteria, but the first photosynthetic eukaryotes most likely evolved in terrestrial-freshwater settings, not in oceans as commonly thought.
Environmental Microbiology | 2008
Achim Quaiser; Purificación López-García; Yvan Zivanovic; Matthew R. Henn; Francisco Rodriguez-Valera; David Moreira
Acidobacteria constitute a still poorly studied phylum that is well represented in soils. Recent studies suggest that members of this phylum may be also abundant in deep-sea plankton, but their relative abundance and ecological role in this ecosystem are completely unknown. A recent screening of three metagenomic deep-sea libraries of bathypelagic plankton from the South Atlantic (1000 m depth), the Adriatic (1000 m depth) and the Ionian (3000 m depth) seas in the Mediterranean revealed an unexpected relative proportion of acidobacterial fosmids, which affiliated to the Solibacterales (Group 3), to the Group 11 and, most frequently, to the Group 6 of this diverse phylum. Here, we present the comparative analysis of 11 acidobacterial genome fragments containing the rrn operon from these Mediterranean libraries. A highly conserved syntenic region spanning up to 30 kb and containing up to 25 open reading frames was shared by Group 6 Acidobacteria. Synteny was also partially conserved in distantly related acidobacterial genome fragments derived from a metagenomic soil library, indicating a remarkable conservation of this genomic region within these Acidobacteria. A search for Acidobacteria-specific hits in directly comparable, available fosmid-end sequences from soil and marine metagenomic libraries showed a significant increase of their relative proportion in plankton libraries as a function of increasing depth reaching, at high depth, levels nearly comparable to those of soil. Thus, our results suggest that Acidobacteria are abundant and represent a significant proportion of the microbial community in the deep-sea ecosystem.
Nature Reviews Microbiology | 2015
Purificación López-García; Yvan Zivanovic; Philippe Deschamps; David Moreira
It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages — including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) — independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles.
The ISME Journal | 2011
Céline Brochier-Armanet; Philippe Deschamps; Purificación López-García; Yvan Zivanovic; Francisco Rodriguez-Valera; David Moreira
The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote Candidatus Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.