Yves Desdevises
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yves Desdevises.
Systematic Biology | 2002
Pierre Legendre; Yves Desdevises; Eric Bazin
A new method, ParaFit, has been developed to test the significance of a global hypothesis of coevolution between parasites and their hosts. Individual host-parasite association links can also be tested. The test statistics are functions of the host and parasite phylogenetic trees and of the set of host-parasite association links. Numerical simulations are used to show that the method has correct rate of type I error and good power except under extreme error conditions. An application to real data (pocket gophers and chewing lice) is presented.
Evolution | 2003
Yves Desdevises; Pierre Legendre; Lamia Azouzi; Serge Morand
Abstract Comparative analysis methods control for the variation linked to phylogeny before attempting to correlate the remaining variation of a trait to present‐day conditions (i.e., ecology and/or environment). A portion of the phylogenetic variation of the trait may be related to ecology, however; this portion is called “phylogenetic niche conservatism. We propose a method of variation partitioning that allows users to quantify this portion of the variation, called the “phylogenetically structured environmental variation. The new method is applied to published data to study, in a phylogenetic framework, the link between body mass and population density in 79 species of mammals. The results suggest that an important part of the variation of mammal body mass is related to the common influence of phylogeny and population density.
Evolution | 2002
Yves Desdevises; Serge Morand; Olivier Jousson; Pierre Legendre
Abstract Host-parasite coevolution was studied between Sparidae (Teleostei) fishes and their parasites of the genus Lamellodiscus (Monogenea, Diplectanidae) in the northwestern Mediterranean Sea. Molecular phylogenies were reconstructed for both groups. The phylogenetic tree of the Sparidae was obtained from previously published 16S mitochondrial DNA (mtDNA) sequences associated with new cytochrome-b mtDNA sequences via a “total evidence” procedure. The phylogeny of Lamellodiscus species was reconstructed from 18S rDNA sequences that we obtained. Host-parasite coevolution was studied through different methods: TreeFitter, TreeMap, and a new method, ParaFit. If the cost of a host switch is not assumed to be high for parasites, all methods agree on the absence of widespread cospeciation processes in this host-parasite system. Host-parasite associations were interpreted to be due more to ecological factors than to coevolutionary processes. Host specificity appeared not to be related to host-parasite cospeciation.
PLOS ONE | 2008
Evelyne Derelle; Conchita Ferraz; Marie-Line Escande; Sophie Eychenié; Richard G. Cooke; Gwenael Piganeau; Yves Desdevises; Laure Bellec; Hervé Moreau; Nigel Grimsley
Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon.
Evolution & Development | 2008
Jorge Cubo; Pierre Legendre; Armand de Ricqlès; Laëtitia Montes; Emmanuel de Margerie; Jacques Castanet; Yves Desdevises
SUMMARY The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology.
The ISME Journal | 2013
Pascal Hingamp; Nigel Grimsley; Silvia G. Acinas; Camille Clerissi; Lucie Subirana; Julie Poulain; Isabel Ferrera; Hugo Sarmento; Emilie Villar; Gipsi Lima-Mendez; Karoline Faust; Shinichi Sunagawa; Jean-Michel Claverie; Yves Desdevises; Peer Bork; Jeroen Raes; Eric Karsenti; Stefanie Kandels-Lewis; Olivier Jaillon; Patrick Wincker; Hiroyuki Ogata
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.
Journal of Virology | 2010
Hervé Moreau; Gwenael Piganeau; Yves Desdevises; Richard G. Cooke; Evelyne Derelle; Nigel Grimsley
ABSTRACT Although marine picophytoplankton are at the base of the global food chain, accounting for half of the planetary primary production, they are outnumbered 10 to 1 and are largely controlled by hugely diverse populations of viruses. Eukaryotic microalgae form a ubiquitous and particularly dynamic fraction of such plankton, with environmental clone libraries from coastal regions sometimes being dominated by one or more of the three genera Bathycoccus, Micromonas, and Ostreococcus (class Prasinophyceae). The complete sequences of two double-stranded (dsDNA) Bathycoccus, one dsDNA Micromonas, and one new dsDNA Ostreococcus virus genomes are described. Genome comparison of these giant viruses revealed a high degree of conservation, both for orthologous genes and for synteny, except for one 36-kb inversion in the Ostreococcus lucimarinus virus and two very large predicted proteins in Bathycoccus prasinos viruses. These viruses encode a gene repertoire of certain amino acid biosynthesis pathways never previously observed in viruses that are likely to have been acquired from lateral gene transfer from their host or from bacteria. Pairwise comparisons of whole genomes using all coding sequences with homologous counterparts, either between viruses or between their corresponding hosts, revealed that the evolutionary divergences between viruses are lower than those between their hosts, suggesting either multiple recent host transfers or lower viral evolution rates.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Johan Decelle; Ian Probert; Lucie Bittner; Yves Desdevises; Sébastien Colin; Colomban de Vargas; Martí Galí; Rafel Simó; Fabrice Not
Symbiotic relationships are widespread in nature and are fundamental for ecosystem functioning and the evolution of biodiversity. In marine environments, photosymbiosis with microalgae is best known for sustaining benthic coral reef ecosystems. Despite the importance of oceanic microbiota in global ecology and biogeochemical cycles, symbioses are poorly characterized in open ocean plankton. Here, we describe a widespread symbiotic association between Acantharia biomineralizing microorganisms that are abundant grazers in plankton communities, and members of the haptophyte genus Phaeocystis that are cosmopolitan bloom-forming microalgae. Cophylogenetic analyses demonstrate that symbiont biogeography, rather than host taxonomy, is the main determinant of the association. Molecular dating places the origin of this photosymbiosis in the Jurassic (ca. 175 Mya), a period of accentuated marine oligotrophy. Measurements of intracellular dimethylated sulfur indicate that the host likely profits from antioxidant protection provided by the symbionts as an adaptation to life in transparent oligotrophic surface waters. In contrast to terrestrial and marine symbioses characterized to date, the symbiont reported in this association is extremely abundant and ecologically active in its free-living phase. In the vast and barren open ocean, partnership with photosymbionts that have extensive free-living populations is likely an advantageous strategy for hosts that rely on such interactions. Discovery of the Acantharia–Phaeocystis association contrasts with the widely held view that symbionts are specialized organisms that are rare and ecologically passive outside the host.
BMC Evolutionary Biology | 2010
Nicolas Montagné; Yves Desdevises; Daniel Soyez; Jean‐Yves Toullec
BackgroundCrustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated.ResultsCHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans.ConclusionsEvolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence.
International Journal for Parasitology | 2000
Yves Desdevises; Richard Jovelin; Olivier Jousson; Serge Morand
We sequenced DNA fragments from four monogenean species of the genus Lamellodiscus and their three fish host species from the genus Pagellus in the North Mediterranean Sea, in order to estimate the molecular divergence and the coevolutionary interactions in this association. By comparing the ITS1 sequences of the parasites, we assessed their level of interspecific differences and tested the phylogenetic status of Lamellodiscus virgula and Lamellodiscus obeliae, formerly described as two different species. Moreover, we wanted to know if closely related parasites used closely related hosts, to investigate the coevolutionary interactions in this complex. Phylogenetic relationships among Lamellodiscus species were estimated with partial 18S ribosomal DNA sequences while mitochondrial cytochrome-b DNA sequences were used for their fish hosts. The ITS1 sequences appear to be highly variable among Lamellodiscus species, except L.virgula and L.obeliae, suggesting an old divergence time or a rapid molecular evolution within this genus. This fish-parasite association seems to exhibit coevolutionary interactions. L.virgula and L.obeliae are proposed to be a single species on the basis of their almost identical ITS1 sequences.