Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yves Sabbagh is active.

Publication


Featured researches published by Yves Sabbagh.


Journal of The American Society of Nephrology | 2009

Intestinal Npt2b Plays a Major Role in Phosphate Absorption and Homeostasis

Yves Sabbagh; Stephen O'Brien; Wenping Song; Joseph H. Boulanger; Adam Stockmann; Cynthia Arbeeny; Susan C. Schiavi

Intestinal phosphate absorption occurs through both a paracellular mechanism involving tight junctions and an active transcellular mechanism involving the type II sodium-dependent phosphate cotransporter NPT2b (SLC34a2). To define the contribution of NPT2b to total intestinal phosphate absorption, we generated an inducible conditional knockout mouse, Npt2b(-/-) (Npt2b(fl/fl):Cre(+/-)). Npt2b(-/-) animals had increased fecal phosphate excretion and hypophosphaturia, but serum phosphate remained unchanged. Decreased urinary phosphate excretion correlated with reduced serum levels of the phosphaturic hormone FGF23 and increased protein expression of the renal phosphate transporter Npt2a. These results demonstrate that the absence of Npt2b triggers compensatory renal mechanisms to maintain phosphate homeostasis. In animals fed a low phosphate diet followed by acute administration of a phosphate bolus, Npt2b(-/-) animals absorbed approximately 50% less phosphate than wild-type animals, confirming a major role of this transporter in phosphate regulation. In vitro analysis of active phosphate transport in ileum segments isolated from wild-type or Npt2b(-/-) mice demonstrated that Npt2b contributes to >90% of total active phosphate absorption. In summary, Npt2b is largely responsible for intestinal phosphate absorption and contributes to the maintenance of systemic phosphate homeostasis.


Journal of Bone and Mineral Research | 2012

Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy

Yves Sabbagh; Fabiana Giorgeti Graciolli; Stephen O'Brien; Wen Tang; Luciene M. dos Reis; Susan Ryan; Lucy Phillips; Joseph H. Boulanger; Wenping Song; Christina Bracken; Steven R. Ledbetter; Paul C. Dechow; Maria Eugênia Fernandes Canziani; Aluizio B. Carvalho; Vanda Jorgetti; Rosa Ma Moyses; Susan C. Schiavi

Chronic kidney disease–mineral bone disorder (CKD‐MBD) is defined by abnormalities in mineral and hormone metabolism, bone histomorphometric changes, and/or the presence of soft‐tissue calcification. Emerging evidence suggests that features of CKD‐MBD may occur early in disease progression and are associated with changes in osteocyte function. To identify early changes in bone, we utilized the jck mouse, a genetic model of polycystic kidney disease that exhibits progressive renal disease. At 6 weeks of age, jck mice have normal renal function and no evidence of bone disease but exhibit continual decline in renal function and death by 20 weeks of age, when approximately 40% to 60% of them have vascular calcification. Temporal changes in serum parameters were identified in jck relative to wild‐type mice from 6 through 18 weeks of age and were subsequently shown to largely mirror serum changes commonly associated with clinical CKD‐MBD. Bone histomorphometry revealed progressive changes associated with increased osteoclast activity and elevated bone formation relative to wild‐type mice. To capture the early molecular and cellular events in the progression of CKD‐MBD we examined cell‐specific pathways associated with bone remodeling at the protein and/or gene expression level. Importantly, a steady increase in the number of cells expressing phosphor‐Ser33/37‐β‐catenin was observed both in mouse and human bones. Overall repression of Wnt/β‐catenin signaling within osteocytes occurred in conjunction with increased expression of Wnt antagonists (SOST and sFRP4) and genes associated with osteoclast activity, including receptor activator of NF‐κB ligand (RANKL). The resulting increase in the RANKL/osteoprotegerin (OPG) ratio correlated with increased osteoclast activity. In late‐stage disease, an apparent repression of genes associated with osteoblast function was observed. These data confirm that jck mice develop progressive biochemical changes in CKD‐MBD and suggest that repression of the Wnt/β‐catenin pathway is involved in the pathogenesis of renal osteodystrophy.


American Journal of Physiology-renal Physiology | 2009

Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: strong synergism with AT1 receptor antagonist

Yan Zhang; Dilip K. Deb; Juan Kong; Gang Ning; Yurong Wang; George Li; Yunzi Chen; Zhongyi Zhang; Stephen Strugnell; Yves Sabbagh; Cynthia Arbeeny; Yan Chun Li

The intrarenal renin-angiotensin system (RAS) plays a key role in the development of diabetic nephropathy. Recently, we showed that combination therapy with an AT(1) receptor blocker (ARB) and an activated vitamin D analog produced excellent synergistic effects against diabetic nephropathy, as a result of blockade of the ARB-induced compensatory renin increase. Given the diversity of vitamin D analogs, here we used a pro-drug vitamin D analog, doxercalciferol (1alpha-hydroxyvitamin D(2)), to further test the efficacy of the combination strategy in long-term treatment. Streptozotocin-induced diabetic DBA/2J mice were treated with vehicle, losartan, doxercalciferol (0.4 and 0.6 microg/kg), or losartan and doxercalciferol combinations for 20 wk. Vehicle-treated diabetic mice developed progressive albuminuria and glomerulosclerosis. Losartan alone moderately ameliorated kidney injury, with renin being drastically upregulated. A similar therapeutic effect was seen with doxercalciferol alone, which markedly suppressed renin and angiotensinogen expression. The losartan and doxercalciferol combination most effectively prevented albuminuria, restored glomerular filtration barrier structure, and dramatically reduced glomerulosclerosis in a dose-dependent manner. These effects were accompanied by blockade of intrarenal renin upregulation and ANG II accumulation. These data demonstrate an excellent therapeutic potential for doxercalciferol in diabetic renal disease and confirm the concept that blockade of the compensatory renin increase enhances the efficacy of RAS inhibition and produces synergistic therapeutic effects in combination therapy.


Advances in Chronic Kidney Disease | 2011

Intestinal Phosphate Transport

Yves Sabbagh; Hector Giral; Yupanqui Caldas; Moshe Levi; Susan C. Schiavi

Phosphate is absorbed in the small intestine by a minimum of 2 distinct mechanisms: paracellular phosphate transport which is dependent on passive diffusion, and active transport which occurs through the sodium-dependent phosphate cotransporters. Despite evidence emerging for other ions, regulation of the phosphate-specific paracellular pathways remains largely unexplored. In contrast, there is a growing body of evidence that active transport through the sodium-dependent phosphate cotransporter, Npt2b, is highly regulated by a diverse set of hormones and dietary conditions. Furthermore, conditional knockout of Npt2b suggests that it plays an important role in maintenance of phosphate homeostasis by coordinating intestinal phosphate absorption with renal phosphate reabsorption. The knockout mouse also suggests that Npt2b is responsible for the majority of sodium-dependent phosphate uptake. The type-III sodium-dependent phosphate transporters, Pit1 and Pit2, contribute to a minor role in total phosphate uptake. Despite coexpression along the apical membrane, differential responses of Pit1 and Npt2b regulation to chronic versus dietary changes illustrates another layer of phosphate transport control. Finally, a major problem in patients with CKD is management of hyperphosphatemia. The present evidence suggests that targeting key regulatory pathways of intestinal phosphate transport may provide novel therapeutic approaches for patients with CKD.


Journal of Cellular Biochemistry | 2005

Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro.

Karen Sooy; Yves Sabbagh; Marie B. Demay

1,25‐Dihydroxyvitamin D plays an important role in the regulation of osteoblast gene expression, regulating the expression of bone matrix proteins as well as that of Runx2, a key regulator of osteoblast differentiation. Studies in mice lacking the vitamin D receptor (VDR) have revealed that the actions of the VDR on the skeleton are not required in the setting of normal mineral ion homeostasis. Since paracrine and endocrine factors can compensate for gene defects in vivo, studies were performed to determine whether ablation of the VDR alters the program of osteoblast differentiation in vitro. Studies in primary calvarial cultures revealed that ablation of the VDR enhanced osteoblast differentiation. The cells from the VDR null mice exhibited an earlier onset and increased magnitude of alkaline phosphatase activity, as well as an earlier and sustained increase in mineralized matrix formation, demonstrating that this enhancement persists throughout the program of osteoblast differentiation. The expression of bone sialoprotein, which enhances mineralization, was also increased in the VDR null cultures. To determine whether the increase in osteoblast differentiation was associated with an increase in the number of osteogenic progenitors, the number of osteoblastic colony forming units (CFU‐OB) was evaluated. There was a twofold increase in the number of CFU‐OB in the cultures isolated from the VDR null mice. Furthermore, the VDR null CFU‐OB demonstrated an earlier onset and higher magnitude of expression of alkaline phosphatase activity when compared to the CFU‐OB from their wild‐type control littermates. These studies demonstrate that the VDR attenuates osteoblast differentiation in vitro and suggest that other endocrine and paracrine factors modulate the effect of the VDR on osteoblast differentiation in vivo.


Journal of The American Society of Nephrology | 2012

Npt2b Deletion Attenuates Hyperphosphatemia Associated with CKD

Susan C. Schiavi; Wen Tang; Christina Bracken; Stephen P. O’Brien; Wenping Song; Joseph H. Boulanger; Susan Ryan; Lucy Phillips; Cynthia Arbeeny; Steven R. Ledbetter; Yves Sabbagh

The incidence of cardiovascular events and mortality strongly correlates with serum phosphate in individuals with CKD. The Npt2b transporter contributes to maintaining phosphate homeostasis in the setting of normal renal function, but its role in CKD-associated hyperphosphatemia is not well understood. Here, we used adenine to induce uremia in both Npt2b-deficient and wild-type mice. Compared with wild-type uremic mice, Npt2b-deficient uremic mice had significantly lower levels of serum phosphate and attenuation of FGF23. Treating Npt2b-deficient mice with the phosphate binder sevelamer carbonate further reduced serum phosphate levels. Uremic mice exhibited high turnover renal osteodystrophy; treatment with sevelamer significantly decreased the number of osteoclasts and the rate of mineral apposition in Npt2b-deficient mice, but sevelamer did not affect bone formation and rate of mineral apposition in wild-type mice. Taken together, these data suggest that targeting Npt2b in addition to using dietary phosphorus binders may be a therapeutic approach to modulate serum phosphate in CKD.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Impaired bone development and increased mesenchymal progenitor cells in calvaria of RB1−/− mice

Gabriel Gutiérrez; Elizabeth Kong; Yves Sabbagh; Nelson E. Brown; Jong-Seo Lee; Marie B. Demay; David Thomas; Philip W. Hinds

We have previously shown that the retinoblastoma protein (pRb) can activate expression of Runx2-dependent, bone-specific genes in cultured cells. We now show that pRb also plays a role early in osteogenesis, and that in primary RB1−/− calvarial cells there is an increased osteoprogenitor pool. To understand pRbs function in vivo, we generated a conditional RB1-KO mouse in which pRb expression is efficiently extinguished in osteoblasts. These animals display an apparent developmental defect in bones, most strikingly in the calvaria. Cultured RB1−/− calvarial osteoblasts fail to cease proliferation upon reaching confluence or following differentiation. Re-plating assays of primary RB1−/− calvarial cells after differentiation showed a clear adipogenic ability with increased multipotency. RB1−/− osteoblasts display a severe reduction in levels of mRNAs expressed late in differentiation. In this study, we present strong evidence that pRb has multiple regulatory roles in osteogenesis. Furthermore, in the absence of RB1−/− there is a larger pool of multipotent cells compared with the WT counterpart. This increased pool of osteoprogenitor cells may be susceptible to additional transforming events leading to osteosarcoma, and is therefore key to understanding RB1 as a target in malignancy.


PLOS ONE | 2013

Effects of Dietary Phosphate on Adynamic Bone Disease in Rats with Chronic Kidney Disease – Role of Sclerostin?

Juliana Carvalho Ferreira; Guaraciaba O. Ferrari; Katia R. Neves; Raquel T. Cavallari; Wagner V. Dominguez; Luciene M. dos Reis; Fabiana G. Graciolli; Elizabeth C. Oliveira; Yves Sabbagh; Vanda Jorgetti; Susan C. Schiavi; Rosa Maria Affonso Moysés

High phosphate intake is known to aggravate renal osteodystrophy along various pathogenetic pathways. Recent studies have raised the possibility that dysregulation of the osteocyte Wnt/β-catenin signaling pathway is also involved in chronic kidney disease (CKD)-related bone disease. We investigated the role of dietary phosphate and its possible interaction with this pathway in an experimental model of adynamic bone disease (ABD) in association with CKD and hypoparathyroidism. Partial nephrectomy (Nx) and total parathyroidectomy (PTx) were performed in male Wistar rats. Control rats with normal kidney and parathyroid function underwent sham operations. Rats were divided into three groups and underwent pair-feeding for 8 weeks with diets containing either 0.6% or 1.2% phosphate: sham 0.6%, Nx+PTx 0.6%, and Nx+PTx 1.2%. In the two Nx+PTx groups, serum creatinine increased and blood ionized calcium decreased compared with sham control group. They also presented hyperphosphatemia and reduced serum parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) levels. Fractional urinary excretion of phosphate increased in Nx+PTx 1.2% rats despite lower PTH and FGF23 levels than in sham group. These biochemical changes were accompanied by a decrease in bone formation rates. The Nx+PTx 1.2% group had lower bone volume (BV/TV), higher osteoblast and osteocyte apoptosis, and higher SOST and Dickkopf-1 gene expression than the Nx+PTx 0.6% group. Nx+PTx 0.6% rat had very low serum sclerostin levels, and Nx+PTx 1.2% had intermediate sclerostin levels compared with sham group. Finally, there was a negative correlation between BV/TV and serum sclerostin. These results suggest that high dietary phosphate intake decreases bone volume in an experimental model of CKD-ABD, possibly via changes in SOST expression through a PTH-independent mechanism. These findings could have relevance for the clinical setting of CKD-ABD in patients who low turnover bone disease might be attenuated by optimal control of phosphate intake and/or absorption.


Pediatrics | 2007

Calcium and Vitamin D: What Is Known About the Effects on Growing Bone

Marie B. Demay; Yves Sabbagh; Thomas O. Carpenter

The objective of these investigations was to determine if the receptor-dependent effects of 1,25-dihydroxyvitamin D were essential for normal skeletal growth. Mice with targeted ablation of the vitamin D receptor were engineered, and the skeletal consequences of vitamin D receptor ablation were studied in the presence of normal and abnormal mineral ion homeostasis. Prevention of abnormal mineral ion homeostasis resulted in the development of a normal skeleton in the absence of a functional vitamin D receptor. The metabolic cause of rickets was found to be hypophosphatemia. The major receptor-dependent actions of 1,25-dihydroxyvitamin D on skeletal development are indirect and are a reflection of the role of this hormone on intestinal calcium absorption.


Journal of The American Society of Nephrology | 2010

Dietary Fructose Inhibits Intestinal Calcium Absorption and Induces Vitamin D Insufficiency in CKD

Veronique Douard; Abbas Asgerally; Yves Sabbagh; Shozo H. Sugiura; Sue A. Shapses; Donatella Casirola; Ronaldo P. Ferraris

Renal disease leads to perturbations in calcium and phosphate homeostasis and vitamin D metabolism. Dietary fructose aggravates chronic kidney disease (CKD), but whether it also worsens CKD-induced derangements in calcium and phosphate homeostasis is unknown. Here, we fed rats diets containing 60% glucose or fructose for 1 mo beginning 6 wk after 5/6 nephrectomy or sham operation. Nephrectomized rats had markedly greater kidney weight, blood urea nitrogen, and serum levels of creatinine, phosphate, and calcium-phosphate product; dietary fructose significantly exacerbated all of these outcomes. Expression and activity of intestinal phosphate transporter, which did not change after nephrectomy or dietary fructose, did not correlate with hyperphosphatemia in 5/6-nephrectomized rats. Intestinal transport of calcium, however, decreased with dietary fructose, probably because of fructose-mediated downregulation of calbindin 9k. Serum calcium levels, however, were unaffected by nephrectomy and diet. Finally, only 5/6-nephrectomized rats that received dietary fructose demonstrated marked reductions in 25-hydroxyvitamin D(3) and 1,25-dihydroxyvitamin D(3) levels, despite upregulation of 1alpha-hydroxylase. In summary, excess dietary fructose inhibits intestinal calcium absorption, induces marked vitamin D insufficiency in CKD, and exacerbates other classical symptoms of the disease. Future studies should evaluate the relevance of monitoring fructose consumption in patients with CKD.

Collaboration


Dive into the Yves Sabbagh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacklyn Lee

University of Medicine and Dentistry of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge