Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yves Van de Peer is active.

Publication


Featured researches published by Yves Van de Peer.


Nature Genetics | 2010

The genome of the domesticated apple (Malus × domestica Borkh.)

Riccardo Velasco; Andrey Zharkikh; Jason Affourtit; Amit Dhingra; Alessandro Cestaro; Ananth Kalyanaraman; Paolo Fontana; Satish Bhatnagar; Michela Troggio; Dmitry Pruss; Silvio Salvi; Massimo Pindo; Paolo Baldi; Sara Castelletti; Marina Cavaiuolo; Giuseppina Coppola; Fabrizio Costa; Valentina Cova; Antonio Dal Ri; Vadim Goremykin; Matteo Komjanc; Sara Longhi; Pierluigi Magnago; Giulia Malacarne; Mickael Malnoy; Diego Micheletti; Marco Moretto; Michele Perazzolli; Azeddine Si-Ammour; Silvia Vezzulli

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.


Nature | 2008

The Phaeodactylum genome reveals the evolutionary history of diatom genomes.

Chris Bowler; Andrew E. Allen; Jonathan H. Badger; Jane Grimwood; Kamel Jabbari; Alan Kuo; Uma Maheswari; Cindy Martens; Florian Maumus; Robert Otillar; Edda Rayko; Asaf Salamov; Klaas Vandepoele; Bank Beszteri; Ansgar Gruber; Marc Heijde; Michael Katinka; Thomas Mock; Klaus Valentin; Frederic Verret; John A. Berges; Colin Brownlee; Jean-Paul Cadoret; Chang Jae Choi; Sacha Coesel; Alessandra De Martino; J. Chris Detter; Colleen Durkin; Angela Falciatore; Jérome Fournet

Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (∼40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.


Nature Reviews Microbiology | 2005

Re-evaluating prokaryotic species

Dirk Gevers; Frederick M. Cohan; Jeffrey G. Lawrence; Brian G. Spratt; Tom Coenye; Edward J. Feil; Erko Stackebrandt; Yves Van de Peer; Peter Vandamme; Fabiano L. Thompson; Jean Swings

There is no widely accepted concept of species for prokaryotes, and assignment of isolates to species is based on measures of phenotypic or genome similarity. The current methods for defining prokaryotic species are inadequate and incapable of keeping pace with the levels of diversity that are being uncovered in nature. Prokaryotic taxonomy is being influenced by advances in microbial population genetics, ecology and genomics, and by the ease with which sequence data can be obtained. Here, we review the classical approaches to prokaryotic species definition and discuss the current and future impact of multilocus nucleotide-sequence-based approaches to prokaryotic systematics. We also consider the potential, and difficulties, of assigning species status to biologically or ecologically meaningful sequence clusters.


Nature | 2013

The Norway spruce genome sequence and conifer genome evolution

Björn Nystedt; Nathaniel R. Street; Anna Wetterbom; Andrea Zuccolo; Yao-Cheng Lin; Douglas G. Scofield; Francesco Vezzi; Nicolas Delhomme; Stefania Giacomello; Andrey Alexeyenko; Riccardo Vicedomini; Kristoffer Sahlin; Ellen Sherwood; Malin Elfstrand; Lydia Gramzow; Kristina Holmberg; Jimmie Hällman; Olivier Keech; Lisa Klasson; Maxim Koriabine; Melis Kucukoglu; Max Käller; Johannes Luthman; Fredrik Lysholm; Totte Niittylä; Åke Olson; Nemanja Rilakovic; Carol Ritland; Josep A. Rosselló; Juliana Stival Sena

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.


Nature Genetics | 2011

The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

Tina T. Hu; Pedro Pattyn; Erica G. Bakker; Jun Cao; Jan Fang Cheng; Richard M. Clark; Noah Fahlgren; Jeffrey A. Fawcett; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Jesse D. Hollister; Stephan Ossowski; Robert P. Ottilar; Asaf Salamov; Korbinian Schneeberger; Manuel Spannagl; Xi Wang; Liang Yang; Mikhail E. Nasrallah; Joy Bergelson; James C. Carrington; Brandon S. Gaut; Jeremy Schmutz; Klaus F. X. Mayer; Yves Van de Peer; Igor V. Grigoriev; Magnus Nordborg; Detlef Weigel; Ya-Long Guo

We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3× dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.


Nucleic Acids Research | 1994

Database on the Structure of Large Ribosomal Subunit RNA

Peter De Rijk; Yves Van de Peer; Rupert De Wachter

About 8600 complete or nearly complete sequences are now available from the Antwerp database on small ribosomal subunit RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and detailed taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/


Nature | 2010

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.


Plant Physiology | 2003

Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis

Jeroen Raes; Antje Rohde; Jørgen Holst Christensen; Yves Van de Peer; Wout Boerjan

Lignin, one of the most abundant terrestrial biopolymers, is indispensable for plant structure and defense. With the availability of the full genome sequence, large collections of insertion mutants, and functional genomics tools, Arabidopsis constitutes an excellent model system to profoundly unravel the monolignol biosynthetic pathway. In a genome-wide bioinformatics survey of the Arabidopsis genome, 34 candidate genes were annotated that encode genes homologous to the 10 presently known enzymes of the monolignol biosynthesis pathway, nine of which have not been described before. By combining evolutionary analysis of these 10 gene families with in silico promoter analysis and expression data (from a reverse transcription-polymerase chain reaction analysis on an extensive tissue panel, mining of expressed sequence tags from publicly available resources, and assembling expression data from literature), 12 genes could be pinpointed as the most likely candidates for a role in vascular lignification. Furthermore, a possible novel link was detected between the presence of the AC regulatory promoter element and the biosynthesis of G lignin during vascular development. Together, these data describe the full complement of monolignol biosynthesis genes in Arabidopsis, provide a unified nomenclature, and serve as a basis for further functional studies.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The hidden duplication past of Arabidopsis thaliana

Cedric Simillion; Klaas Vandepoele; Marc Van Montagu; Marc Zabeau; Yves Van de Peer

Analysis of the genome sequence of Arabidopsis thaliana shows that this genome, like that of many other eukaryotic organisms, has undergone large-scale gene duplications or even duplications of the entire genome. However, the high frequency of gene loss after duplication events reduces colinearity and therefore the chance of finding duplicated regions that, at the extreme, no longer share homologous genes. In this study we show that heavily degenerated block duplications that can no longer be recognized by directly comparing two segments because of differential gene loss, can still be detected through indirect comparison with other segments. When these so-called hidden duplications in Arabidopsis are taken into account, many homologous genomic regions can be found in five to eight copies. This finding strongly implies that Arabidopsis has undergone three, but probably no more, rounds of genome duplications. Therefore, adding such hidden blocks to the duplication landscape of Arabidopsis sheds light on the number of polyploidy events that this model plant genome has undergone in its evolutionary past.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation

Brian Palenik; Jane Grimwood; Andrea Aerts; Asaf Salamov; Nicholas H. Putnam; Chris L. Dupont; Richard A. Jorgensen; Stephane Rombauts; Kemin Zhou; Robert Otillar; Sabeeha S. Merchant; Terry Gaasterland; Carolyn A. Napoli; Karla Gendler; Olivier Vallon; Marc Heijde; Kamel Jabbari; Chris Bowler; Steven Robbens; Gregory Werner; Inna Dubchak; Gregory J. Pazour; Ian T. Paulsen; Jeremy Schmutz; Daniel S. Rokhsar; Yves Van de Peer; Igor V. Grigoriev

The smallest known eukaryotes, at ≈1-μm diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri. This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface characteristics of each species. In addition, the genome of O. lucimarinus provides insights into the unique metal metabolism of these organisms, which are predicted to have a large number of selenocysteine-containing proteins. Selenoenzymes are more catalytically active than similar enzymes lacking selenium, and thus the cell may require less of that protein. As reported here, selenoenzymes, novel fusion proteins, and loss of some major protein families including ones associated with chromatin are likely important adaptations for achieving a small cell size.

Collaboration


Dive into the Yves Van de Peer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge