Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvette C. Luiking is active.

Publication


Featured researches published by Yvette C. Luiking.


The American Journal of Clinical Nutrition | 2009

Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production

Yvette C. Luiking; Martijn Poeze; Graham Ramsay; Nicolaas E. P. Deutz

BACKGROUND L-Arginine is an important precursor of nitric oxide (NO) and protein synthesis. Arginine is produced in the body (mainly kidney) by de novo production from citrulline and by protein breakdown. Arginine availability appears to be limited in sepsis. OBJECTIVE The objective was to compare arginine and citrulline metabolism in septic patients and nonseptic control patients in an intensive care unit (ICU) and in healthy control subjects. DESIGN Ten patients with septic shock, 7 critically ill control patients, and 16 healthy elderly subjects were studied. Metabolism was measured by using a primed continuous (2 h) stable-isotope infusion protocol. NO production was calculated as the conversion rate of arginine to citrulline; de novo arginine production was calculated as the conversion rate of citrulline to arginine. Arterial blood (arterialized venous blood in healthy subjects) was collected for the measurement of amino acid enrichment and concentrations. Data are reported as means +/- SDs. RESULTS Whole-body citrulline production was significantly lower in septic patients (4.5 +/- 2.1 micromol . kg(-1) . h(-1)) than in ICU control patients (10.1 +/- 2.9 micromol . kg(-1) . h(-1); P < 0.01) and in healthy control subjects (13.7 +/- 4.1 micromol . kg(-1) . h(-1); P < 0.001). Accordingly, de novo arginine production was lower in patients with sepsis (3.3 +/- 3.7 micromol . kg(-1) . h(-1)) than in healthy controls (11.9 +/- 6.6 micromol . kg(-1) . h(-1); P < 0.01) and tended to be lower in septic patients than in ICU control patients (10.9 +/- 9.4 micromol . kg(-1) . h(-1); P = 0.05). NO production was lower in septic patients than in healthy control subjects (P < 0.01), whereas a larger part of arginine was converted to urea in sepsis. CONCLUSIONS Citrulline production is severely low in patients with sepsis and is related to diminished de novo arginine and NO production. These metabolic alterations contribute to reduced citrulline and arginine availability, and these findings warrant further studies of therapeutic nutritional interventions to restore arginine metabolism in sepsis.


Current Opinion in Clinical Nutrition and Metabolic Care | 2010

Regulation of nitric oxide production in health and disease.

Yvette C. Luiking; M.P. Engelen; Nicolaas E. P. Deutz

Purpose of reviewThe purpose of this review is to highlight recent publications examining nitric oxide production in health and disease and its association with clinical nutrition and alterations in metabolism. Recent findingsThe role of the cofactor tetrahydrobiopterin in nitric oxide production and its relation with arginine availability is indicated as an important explanation for the arginine paradox. This offers potential for nitric oxide regulation by dietary factors such as arginine or its precursors and vitamin C. Because diets with a high saturated fat content induce high plasma fatty acid levels, endothelial nitric oxide production is often impaired due to a reduction in nitric oxide synthase 3 phosphorylation. Increasing the arginine availability by arginine therapy or arginase inhibition was, therefore, proposed as a potential therapy to treat hypertension. Recent studies in septic patients and transgenic mice models found that inadequate de-novo arginine production from citrulline reduces nitric oxide production. Citrulline supplementation may, therefore, be a novel therapeutic approach in conditions of arginine deficiency. SummaryBoth lack and excess of nitric oxide production in diseases can have various important implications in which dietary factors can play a modulating role. Future research is needed to expand our understanding of the regulation and adequate measurement of nitric oxide production at the organ level and by the different nitric oxide synthase isoforms, also in relation to clinical nutrition.


Critical Care Medicine | 2004

Sepsis: an arginine deficiency state?

Yvette C. Luiking; Martijn Poeze; Cornelis H.C. Dejong; Graham Ramsay; Nicolaas E. P. Deutz

Objective:Sepsis is a major health problem considering its significant morbidity and mortality rate. The amino acid l-arginine has recently received substantial attention in relation to human sepsis. However, knowledge of arginine metabolism during sepsis is limited. Therefore, we reviewed the current knowledge about arginine metabolism in sepsis. Data Source:This review summarizes the literature on arginine metabolism both in general and in relation to sepsis. Moreover, arginine-related therapies are reviewed and discussed, which includes therapies of both nitric oxide (NO) and arginine administration and therapies directed toward inhibition of NO. Data:In sepsis, protein breakdown is increased, which is a key process to maintain arginine delivery, because both endogenous de novo production from citrulline and food intake are reduced. Arginine catabolism, on the other hand, is markedly increased by enhanced use of arginine in the arginase and NO pathways. As a result, lowered plasma arginine levels are usually found. Clinical symptoms of sepsis that are related to changes in arginine metabolism are mainly related to hemodynamic alterations and diminished microcirculation. NO administration and arginine supplementation as a monotherapy demonstrated beneficial effects, whereas nonselective NO synthase inhibition seemed not to be beneficial, and selective NO synthase 2 inhibition was not beneficial overall. Conclusions:Because sepsis has all the characteristics of an arginine-deficiency state, we hypothesise that arginine supplementation is a logical option in the treatment of sepsis. This is supported by substantial experimental and clinical data on NO donors and NO inhibitors. However, further evidence is required to prove our hypothesis.


Journal of Parenteral and Enteral Nutrition | 2005

The Role of Arginine in Infection and Sepsis

Yvette C. Luiking; Martijn Poeze; Graham Ramsay; Nicolaas E. P. Deutz

Sepsis is a systemic response to an infection, with high morbidity and mortality rates. Metabolic changes during infection and sepsis could be related to changes in metabolism of the amino acid L-arginine. In sepsis, protein breakdown is increased, which is a key process to maintain arginine delivery because both endogenous de novo arginine production from citrulline and food intake are reduced. Arginine catabolism, on the other hand, is markedly increased by enhanced use of arginine via the arginase and nitric oxide pathways. As a result, lowered plasma arginine levels are usually found. Arginine may therefore be considered as an essential amino acid in sepsis, and supplementation could be beneficial in sepsis by improving microcirculation and protein anabolism. L-Arginine supplementation in a hyperdynamic pig model of sepsis prohibits the increase in pulmonary arterial blood pressure, improves muscle and liver protein metabolism, and restores the intestinal motility pattern. Arguments raised against arginine supplementation are mainly pointed at stimulating nitric oxide (NO) production, with concerns about toxicity of increased NO and hemodynamic instability with refractory hypotension. NO synthase inhibition, however, increased mortality. Arginine supplementation in septic patients has transient effects on hemodynamics when supplied as a bolus but seems without hemodynamic side effects when supplied continuously. In conclusion, arginine could have an essential role in infection and sepsis.


British Journal of Cancer | 2009

Dietary supplementation with a specific combination of high protein, leucine, and fish oil improves muscle function and daily activity in tumour-bearing cachectic mice

K. van Norren; D. Kegler; J M Argilés; Yvette C. Luiking; Marchel Gorselink; Alessandro Laviano; K. Arts; Joyce Faber; H. Jansen; E M van der Beek; A. van Helvoort

Cancer cachexia is characterised by metabolic alterations leading to loss of adipose tissue and lean body mass and directly compromises physical performance and the quality of life of cancer patients. In a murine cancer cachectic model, the effects of dietary supplementation with a specific combination of high protein, leucine and fish oil on weight loss, muscle function and physical activity were investigated. Male CD2F1 mice, 6–7 weeks old, were divided into body weight-matched groups: (1) control, (2) tumour-bearing, and (3) tumour-bearing receiving experimental diets. Tumours were induced by s.c. inoculation with murine colon adenocarcinoma (C26) cells. Food intake, body mass, tumour size and 24 h-activity were monitored. Then, 20 days after tumour/vehicle inoculation, the animals were killed and muscle function was tested ex vivo. Tumour-bearing mice showed reduced carcass, muscle and fat mass compared with controls. EDL muscle performance and total daily activity were impaired in the tumour-bearing mice. Addition of single nutrients resulted in no or modest effects. However, supplementation of the diet with the all-in combination of high protein, leucine and fish oil significantly reduced loss of carcass, muscle and fat mass (loss in mass 45, 52 and 65% of TB-con, respectively (P<0.02)) and improved muscle performance (loss of max force reduced to 55–64% of TB-con (P<0.05)). Moreover, total daily activity normalised after intervention with the specific nutritional combination (50% of the reduction in activity of TB-con (P<0.05)). In conclusion, a nutritional combination of high protein, leucine and fish oil reduced cachectic symptoms and improved functional performance in cancer cachectic mice. Comparison of the nutritional combination with its individual modules revealed additive effects of the single components provided.


Molecular Nutrition & Food Research | 2013

1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes

Jérôme Salles; Christophe Giraudet; Véronique Patrac; Philippe Pierre; Marion Jourdan; Yvette C. Luiking; S. Verlaan; Carole Migné; Yves Boirie; Stéphane Walrand

SCOPE In recent years, there has been a growing body of evidence pointing to an effect of vitamin D on muscle mass and function. Our aim was to investigate the combined effect of 1,25(OH)2-vitamin D3 (1,25(OH)2D3) with anabolic factors insulin and leucine on protein fractional synthesis rate (FSR) and regulation in the mouse C2C12 myotube. METHODS AND RESULTS After differentiation, myotubes were cultured in 1,25(OH)2D3 solutions at 0, 1, or 10 nM for 72 h. Cells were treated by L-[1-(13) C]valine and puromycin in presence or not of leucine and insulin, and protein FSR was determined by measuring tracer enrichments and puromycin incorporation in proteins, respectively. Protein expression and phosphorylation state of insulin receptor (IR), Akt, GSK3, mTOR, p70 S6 kinase, rpS6, and 4EBP1 were measured by Western blot. Transcript levels of IR and 1,25(OH)2D3 receptor (VDR) were determined by qPCR. 1,25(OH)2D3 (10 nM) with leucine and insulin increased protein FSR in C2C12 myotubes (14-16%). IR and VDR mRNA expression was increased with 1,25(OH)2D3 treatment. The Akt/mTOR-dependent pathway was activated by insulin and leucine and further enhanced by 1,25(OH)2D3. CONCLUSION 1,25(OH)2D3 sensitizes the Akt/mTOR-dependant pathway to the stimulating effect of leucine and insulin, resulting in a further activation of protein synthesis in murine C2C12 skeletal myotubes.


Critical Care Medicine | 2007

Exogenous arginine in sepsis.

Yvette C. Luiking; Nicolaas E. P. Deutz

Sepsis is a severe condition in critically ill patients and is considered an arginine deficiency state. The rationale for arginine deficiency in sepsis is mainly based on the reduced arginine levels in sepsis that are associated with the specific changes in arginine metabolism related to endothelial dysfunction, severe catabolism, and worse outcome. Exogenous arginine supplementation in sepsis shows controversial results with only limited data in humans and variable results in animal models of sepsis. Since in these studies the severity of sepsis varies but also the route, timing, and dose of arginine, it is difficult to draw a definitive conclusion for sepsis in general without considering the influence of these factors. Enhanced nitric oxide production in sepsis is related to suggested detrimental effects on hemodynamic instability and enhanced oxidative stress. Potential mechanisms for beneficial effects of exogenous arginine in sepsis include enhanced (protein) metabolism, improved microcirculation and organ function, effects on immune function and antibacterial effects, improved gut function, and an antioxidant role of arginine. We recently performed a study indicating that arginine can be given to septic patients without major effects on hemodynamics, suggesting that more studies can be conducted on the effects of arginine supplementation in septic patients.


Gut | 1998

Motilin induces gall bladder emptying and antral contractions in the fasted state in humans

Yvette C. Luiking; T Peeters; Mark Stolk; Vincent B. Nieuwenhuijs; Piero Portincasa; I Depoortere; G. P. van Berge Henegouwen; L. M. A. Akkermans

Background—Animal studies have shown that motilin affects gall bladder motility. In humans, no effect has been shown, but erythromycin, a motilin receptor agonist, induces gall bladder emptying. Aims—To explore the effect of increasing doses of exogenous motilin on gall bladder volume and antral contractility in the fasted state in humans. Methods—After an overnight fast, eight healthy men received increasing intravenous doses of Leu13-motilin (KW-5139) or 0.9% NaCl in a double blind, randomised fashion. Gall bladder volume and antral contraction frequency were determined by ultrasonography. Results—Infusion of motilin increased plasma motilin levels. Motilin induced a reduction in gall bladder volume of 8.0 (5.0)%, 17.1 (5.0)%, 18.5 (4.7)%, and 16.1 (4.9)% of baseline volume at the end of infusion of 2, 4, ,8 and 16 pmol/kg/min respectively, compared with mean stable gall bladder volumes during placebo infusion (p<0.05). Antral contraction frequency increased during motilin infusion, but not during placebo infusion (p<0.05). Conclusions—Exogenous motilin reducted fasting gall bladder volume and increased antral contractions. After reaching maximal reduction, the gall bladder volume did not decrease further during continuous motilin infusion at higher doses and stayed at the same reduced volume. The degree of gall bladder volume reduction during motilin infusion mimicked gall bladder emptying preceding antral phase III activity of the migrating motor complex in humans. This study indicates that motilin may play a physiological role in the regulation of gall bladder emptying in the fasted state.


Journal of the American Medical Directors Association | 2015

Instruments to Assess Sarcopenia and Physical Frailty in Older People Living in a Community (Care) Setting: Similarities and Discrepancies

Donja M. Mijnarends; J.M.G.A. Schols; Judith M.M. Meijers; Frans E. S. Tan; S. Verlaan; Yvette C. Luiking; John E. Morley; Ruud Halfens

OBJECTIVES Both sarcopenia and physical frailty are geriatric syndromes causing loss of functionality and independence. This study explored the association between sarcopenia and physical frailty and the overlap of their criteria in older people living in different community (care) settings. Moreover, it investigated the concurrent validity of the FRAIL scale to assess physical frailty, by comparison with the widely used Fried criteria. DESIGN Data were retrieved from the cross-sectional Maastricht Sarcopenia Study (MaSS). SETTING The study was undertaken in different community care settings in an urban area (Maastricht) in the south of the Netherlands. PARTICIPANTS Participants were 65 years or older, gave written informed consent, were able to understand Dutch language, and were not wheelchair bound or bedridden. INTERVENTION Not applicable. MEASUREMENTS Sarcopenia was identified using the algorithm of the European Working Group on Sarcopenia in Older People. Physical frailty was assessed by the Fried criteria and by the FRAIL scale. Logistic regression was performed to assess the association between sarcopenia and physical frailty measured by the Fried criteria. Spearman correlation was performed to assess the concurrent validity of the FRAIL scale compared with the Fried criteria. RESULTS Data from 227 participants, mean age 74.9 years, were analyzed. Sarcopenia was identified in 23.3% of the participants, when using the cutoff levels for moderate sarcopenia. Physical frailty was identified in 8.4% (≥3 Fried criteria) and 9.3% (≥3 FRAIL scale criteria) of the study population. Sarcopenia and physical frailty were significantly associated (P = .022). Frail older people were more likely to be sarcopenic than those who were not frail. In older people who were not frail, the risk of having sarcopenia increased with age. Next to poor grip strength (78.9%) and slow gait speed (89.5%), poor performance in other functional tests was common in frail older people. The 2 physical frailty scales were significantly correlated (r = 0.617, P < .001). CONCLUSION Sarcopenia and physical frailty were associated and partly overlap, especially on parameters of impaired physical function. Some evidence for concurrent validity between the FRAIL scale and Fried criteria was found. Future research should elicit the value of combining sarcopenia and frailty measures in preventing disability and other negative health outcomes.


British Journal of Nutrition | 2015

Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review.

Sovianne ter Borg; S. Verlaan; Jaimie Hemsworth; Donja M. Mijnarends; J.M.G.A. Schols; Yvette C. Luiking; Lisette C. P. G. M. de Groot

Micronutrient deficiencies and low dietary intakes among community-dwelling older adults are associated with functional decline, frailty and difficulties with independent living. As such, studies that seek to understand the types and magnitude of potential dietary inadequacies might be beneficial for guiding future interventions. We carried out a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Observational cohort and longitudinal studies presenting the habitual dietary intakes of older adults ( ≥ 65 years) were included. Sex-specific mean (and standard deviation) habitual micronutrient intakes were extracted from each article to calculate the percentage of older people who were at risk for inadequate micronutrient intakes using the estimated average requirement (EAR) cut-point method. The percentage at risk for inadequate micronutrient intakes from habitual dietary intakes was calculated for twenty micronutrients. A total of thirty-seven articles were included in the pooled systematic analysis. Of the twenty nutrients analysed, six were considered a possible public health concern: vitamin D, thiamin, riboflavin, Ca, Mg and Se. The extent to which these apparent inadequacies are relevant depends on dynamic factors, including absorption and utilisation, vitamin and mineral supplement use, dietary assessment methods and the selection of the reference value. In light of these considerations, the present review provides insight into the type and magnitude of vitamin and mineral inadequacies.

Collaboration


Dive into the Yvette C. Luiking's collaboration.

Top Co-Authors

Avatar

S. Verlaan

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Walrand

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Boirie

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge