Yvon Julé
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yvon Julé.
The American Journal of Gastroenterology | 2002
Christophe Porcher; Marjolaine Baldo; Monique Henry; Pierre Orsoni; Yvon Julé; Sean M. Ward
OBJECTIVE:Interstitial cells of Cajal are critical for the generation of electrical slow waves that regulate the phasic contractile activity of the tunica muscularis of the GI tract. Under certain pathophysiological conditions loss of interstitial cells of Cajal may play a role in the generation of certain motility disorders. The aim of the present study was to determine if there is an abnormality in the density or distribution of interstitial cells of Cajal from patients with Crohns disease.METHODS:Small intestines from control subjects and patients with Crohns disease were examined using immunohistochemistry and antibodies against the Kit receptor, which is expressed in interstitial cells of Cajal within the tunica muscularis of the GI tract. The density and distribution of interstitial cells of Cajal were assessed in the longitudinal and circular muscle layers and in the myenteric and deep muscular plexus regions of Crohns and control tissues.RESULTS:Tissues from Crohns disease patients showed an almost complete abolition of interstitial cells of Cajal within the longitudinal and circular muscle layers and a significant reduction in numbers at the level of the myenteric and deep muscular plexuses.CONCLUSIONS:In tissues from Crohns disease patients, the density of interstitial cells of Cajal was reduced throughout the tunica muscularis in comparison to control small intestines. The disturbance of intestinal motility that occurs in patients with Crohns disease may be a consequence of the loss of or defects in specific populations of interstitial cells of Cajal within the tunica muscularis.
The Journal of Comparative Neurology | 2007
Nadia Jaafari; Alexandra Khomitch-Baud; Marie-Odile Christen; Yvon Julé
Although a number of pharmacological studies have shown the involvement of tachykinin type 2 receptors (NK2r) in the regulation of human colonic motility, few data are available so far on their pattern of expression. In this study this pattern was investigated in the myenteric plexuses, the longitudinal and circular muscle layers (external muscular layers), and the interstitial cells of Cajal (ICCs) using confocal microscopy immunofluorescence methods. NK2r immunoreactivity (NK2r‐IR) was detected in the soma of myenteric neurons and in nerve varicosities located in myenteric plexuses as well as in external muscular layers. Colocalization analysis of NK2r‐IR and synaptophysin‐IR, showed significant regional differences in the distribution of NK2r‐expressing nerve varicosities, the rate of occurrence was found to be 56.08% ± 3% (mean ± SE) in the external muscular layers and 30.22% ± 1% (mean ± SE) in the myenteric plexuses. NK2r‐IR was found in membranes of most muscle cells previously incubated with a selective NK2r agonist, [β‐Ala8] neurokinin A fragment 4‐10, at 4°C, and then mainly relocated in the cytoplasm when heated to 37°C. A number of NK2r‐IR nerve varicosities were close to NK2r‐expressing neurons and muscle cells. Some of NK2r‐expressing neurons and nerves were tachykinin‐IR. No NK2r‐IR was detected in ICCs. The present data indicate that presynaptic and postsynaptic neuroneuronal and neuromuscular regulatory processes mediated by tachykinins via NK2r may occur for modulating human colonic motility. J. Comp. Neurol. 503:381–391, 2007.
Regulatory Peptides | 1993
Didier Bagnol; Fabienne Herbrecht; Yvon Julé; Thérèse Jarry; Anny Cupo
The aim of the present study was to analyze changes in the enkephalin immunoreactivity of sympathetic prevertebral ganglia coeliac plexus and inferior mesenteric ganglion) and intestinal tract (myenteric plexus and external muscle layers) in cats 2 days after left thoracic splanchnic nerve ligation, using radioimmunoassay and immunohistochemical techniques. Specific polyclonal antibodies directed against methionine- and leucine-enkephalin were used. The nerve ligation led to a considerable increase in the enkephalin immunoreactivity in the cranial part of the ligated nerves. This finding confirms the presence, in the cat, of an enkephalin output originating from thoracic spinal structures which are probably enkephalin-containing preganglionic neurons. In prevertebral ganglia the nerve ligation induced a marked decrease in the enkephalin immunoreactivity, which was probably due to the interruption of thoracic enkephalin efferents projecting towards both the coeliac plexus and the inferior mesenteric ganglion. In the digestive tract, the nerve ligation depressed the methionine-enkephalin immunoreactivity only in the gastro-duodenal region, and had no effect on the ileo-colonic region. The results of the present study add to the growing evidence that the sympathetic nervous system is involved in regulating the enteric enkephalinergic innervation, which is probably involved in controlling the intestinal motility.
Journal of Histochemistry and Cytochemistry | 2000
Christophe Porcher; Yvon Julé; Monique Henry
Enkephalins are involved in neural control of digestive functions such as motility, secretion, and absorption. To better understand their role in pigs, we analyzed the qualitative and quantitative distribution of enkephalin immunoreactivity (ENK-IR) in components of the intestinal wall from the esophagus to the anal sphincter. Immunohistochemical labelings were analyzed using conventional fluorescence and confocal microscopy. ENK-IR was compared with the synaptophysin immunoreactivity (SYN-IR). The results show that maximal ENK-IR levels in the entire digestive tract are reached in the myenteric plexuses and, to a lesser extent, in the external submucous plexus and the circular muscle layer. In the longitudinal muscle layer, ENK-IR was present in the esophagus, stomach, rectum, and anal sphincter, whereas it was absent from the duodenum to the distal colon. In the ENK-IR plexuses and muscle layers, more than 60% of the nerve fibers identified by SYN-IR expressed ENK-IR. No ENK-IR was observed in the internal submucous plexus and the mucosa; the latter was found to contain ENK-IR endocrine cells. These results strongly suggest that, in pigs, enkephalins play a major role in the regulatory mechanisms that underlie the neural control of digestive motility.
Autonomic Neuroscience: Basic and Clinical | 2006
Hikma Boutaghou-Cherid; Christophe Porcher; Martine Liberge; Yvon Julé; Nigel W. Bunnett; Marie-Odile Christen
The distribution of the neurokinin type 1 receptor (NK1r) in human intestine, mapped in a few immunohistochemical investigations in the antrum and the duodenum, is comparable to that widely studied in rodents. Importantly, despite pharmacological evidence of their presence in mammalian intestinal muscle, their immunohistochemical visualization in smooth muscle cells remains to be determined in human digestive tract. In the present work, we studied the distribution of NK1r in the human colon, with a particular view to visualize their expression in muscle cells. With this aim, part of colonic segments were incubated with nicardipine and TTX in order to induce accumulation of the NK1r on cell membrane. NK1r were visualized by using immunohistochemistry combined with fluorescence and confocal microscopy. Without incubation, NK1r-IR was clearly observed on the membrane and the cytoplasm of myenteric and submucous neurons and interstitial cells of Cajal, but could not be clearly determined in the longitudinal and circular muscle. NK1r-IR-expressing neurons and interstitial cells were closely surrounded by substance P (SP) immunoreactive nerves. Incubation of colonic segments with nicardipine and TTX at 4 degrees C for 1 h with SP allowed to reveal a strong NK1r-IR at the surface of muscle cells. Incubation with SP (10(-6) M) at 37 degrees C for 1 min induced a relocation of NK1r-IR into the cytoplasm of muscle. This is interpreted as an internalization of NK1r induced by the binding of SP on muscular NK1r. The present data contribute to emphasize the role of NK1r in tachykinin-mediated neuronal processes regulating intestinal motility.
Neuroscience | 1989
B. Mazet; J.P. Miolan; J.P. Niel; Yvon Julé; C. Roman
The involvement of duodenal and gastric mechanoreceptors in the modulation of synaptic transmission was investigated in a rabbit sympathetic prevertebral ganglion. The present study was performed in vitro on the coeliac plexus connected to the stomach and the duodenum. The electrical activity of ganglionic neurons was recorded using intracellular recording techniques. The patterns of synaptic activation of these ganglionic neurons in response to the activation of mechanoreceptors by gastric or duodenal distension were investigated. Although gastric or duodenal distension was unable to elicit any fast synaptic activity in ganglionic neurons, it produced either an inhibition or a facilitation of the fast nicotinic excitatory postsynaptic potentials elicited by stimulation of the thoracic splanchnic nerves. In addition, this distension triggered long-lasting (3-11 min) modifications in the electrical properties of the ganglionic neurons, i.e. slow depolarizations (6-18 mV) or slow hyperpolarizations (3-6 mV), which were sometimes associated with a decrease in the input membrane resistance. After cooling of the nerves connecting the coeliac ganglia to the stomach, the activation of gastric or duodenal mechanoreceptors was no longer able to modify the fast synaptic activation or the electrical properties of the ganglionic neurons. The results demonstrate that gastric and duodenal mechanoreceptors project onto neurons of the coeliac ganglia and change their excitability as well as the central inputs they receive. The long duration of these modifications suggests that gastric and duodenal mechanoreceptors can modulate the activity of the neurons of the coeliac ganglia.
European Journal of Pharmacology | 2008
Nadia Jaafari; Guoqiang Hua; José Adélaïde; Yvon Julé; Jean Imbert
Tachykinins are a family of neuropeptides, involved in a variety of physiological and pathological processes occurring in the gastrointestinal tract. They act via three distinct types of receptors, tachykinin NK(1), NK(2), and NK(3) receptors, which belong to the family of G protein-coupled receptors. The aim of the present study was to characterize, for the first time in the healthy human colon, the TACR(1), TACR(2) and TACR(3) mRNAs encoding the three different tachykinin receptors and to measure their relative expression by quantitative reverse transcription-PCR assay. Our results confirm the broad distribution of the tachykinin receptors but evidenced significant differences in the expression level of their respective mRNAs. A higher expression level of the TACR2 mRNA alpha isoform, the gene encoding the functional tachykinin NK(2) receptor, was observed in comparison to TACR1 and TACR3 mRNAs genes encoding for NK(1) and NK(3) receptors respectively. The prevalence of the TACR2 mRNA alpha isoform strongly suggests a major involvement of tachykinin NK(2) receptor in the regulation of human colonic functions.
Regulatory Peptides | 1995
Fabienne Herbrecht; Didier Bagnol; Karine Cucumel; Yvon Julé; Anny Cupo
The aim of the present study was to determine the distribution of methionine-enkephalin (ME) and leucine-enkephalin (LE) immunoreactivity in the sympathetic prevertebral ganglia (coeliac plexus and inferior mesenteric ganglion) and in the myenteric plexus-muscular layer complex of the digestive tract in guinea-pigs and rats. This study was performed using the same immunological approaches including radioimmunoassays and HPLC characterization as those used previously on cats in order to be able to make inter-region and inter-species comparisons. In rat and guinea-pig prevertebral ganglia, the distributions of the enkephalin immunoreactivities were comparable and were characterized by a low ME/LE concentration ratio, of less than 1. In the digestive tract of rats, the enkephalin immunoreactivities were homogeneously distributed, whereas in guinea-pigs, they were found to be very low in the lower oesophageal sphincter and high in the duodenum. In both species, the ME/LE concentration ratio was around 2. The ME/LE concentration ratio determined in the present study in peripheral nervous structures was much lower than that determined previously in the rat brain. Radioimmunoassay and biochemical data might indicate that different mechanisms are responsible for the processing and/or degradation of enkephalins in the central and peripheral nervous systems. The present study provides further evidences that there are tissue- and species-dependent differences in the distribution of enkephalin immunoreactivities. These differences should be taken into consideration when dealing with the effects and the role of enkephalins in the nervous control of intestinal motility in mammals.
Neuroscience | 1988
Yvon Julé; A. Cupo; J.P. Niel; J.P. Miolan; T. Jarry
The [Met]enkephalin, [Leu]enkephalin and [Met]enkephalin-arg-gly-leu contents of the upper part of the digestive tract (lower oesophageal sphincter, fundus, antrum, pylorus, duodenum, ileum) and coeliac ganglia of the cat were determined and identified. The enkephalin content of all the structures studied, expressed in femtomole/mg of wet tissue, was found to range from 83 to 446 with [Met]enkephalin; 19 to 63 with [Leu]enkephalin; 2.5 to 13 with [Met]enkephalin-arg-gly-leu. In the muscular and plexus layers the [Met]- and [Leu]enkephalin contents increase gradually from the lower oesophageal sphincter to the pylorus and then decrease from the duodenum to the ileum. The [Met]enkephalin versus [Leu]enkephalin ratio is 2.7 in the coeliac ganglia and ranges from 4.3 to 8.1 in the areas of the digestive tract investigated. In addition, the presence of authentic [Met]- and [Leu]enkephalin was confirmed in all the structures assayed by high pressure liquid chromatography. Owing to the low amounts of [Met]enkephalin-arg-gly-leu detected in individual samples of the coeliac ganglia and in the areas of the digestive tract investigated, it was not possible to characterize this peptide using high pressure liquid chromatography and therefore to confirm the presence of authentic [Met]enkephalin-arg-gly-leu in these structures. The differences in the enkephalin concentrations observed among these various areas of the digestive tract suggest that these peptides may act differently from one area to another, thus playing a complex integrative role in the nervous control of gastrointestinal tract motility.
Journal of The Autonomic Nervous System | 1993
Didier Bagnol; Yvon Julé; G. Kirchner; Anny Cupo; C. Roman
Retrograde tracing with rhodamine fluorescent microspheres combined with fluorescein immunolabelling of methionine-enkephalin showed the presence of enkephalin-like material in neurons of the inferior mesenteric ganglion (sympathetic prevertebral ganglion) projecting to the distal colon in cat. Two weeks after injecting the microspheres into the wall of the distal colon, the inferior mesenteric ganglion was dissected out and incubated for 24 hours in a colchicine-containing culture medium in order to facilitate the detection of enkephalins in the soma of ganglion neurons. It was observed that retrogradely labelled ganglion cells contained enkephalin-like immunoreactive material. These ganglion cells corresponded to enkephalin-like postganglionic neurons, the terminals of which were located inside the wall of the distal colon. These enkephalin-like neurons were numerous and scattered throughout the ganglion. Sometimes enkephalin-like immunoreactive fibers, probably originating from spinal preganglionic neurons, ran close to immunoreactive and non-immunoreactive retrogradely labelled ganglion cells. This suggests that enkephalin-like immunoreactive fibers may make synaptic connections with enkephalin-like and non-enkephalin-like postganglionic neurons projecting to the distal colon. The present study establishes for the first time the existence of an enkephalin-like postganglionic pathway to the digestive tract originating from a sympathetic prevertebral ganglion. This finding indicates that the enkephalinergic innervation of the cat digestive tract may have at least two possible sources: (i) the sympathetic prevertebral ganglia; and (ii) the enteric nervous ganglia.