Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvona Ward is active.

Publication


Featured researches published by Yvona Ward.


Nature Cell Biology | 2014

Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis

Zhenyu Cai; Siriporn Jitkaew; Jie Zhao; Hsueh Cheng Chiang; Swati Choksi; Jie Liu; Yvona Ward; Ling Gang Wu; Zheng Gang Liu

The mixed lineage kinase domain-like protein (MLKL) has recently been identified as a key RIP3 (receptor interacting protein 3) downstream component of tumour necrosis factor (TNF)-induced necroptosis. MLKL is phosphorylated by RIP3 and is recruited to the necrosome through its interaction with RIP3. However, it is still unknown how MLKL mediates TNF-induced necroptosis. Here, we report that MLKL forms a homotrimer through its amino-terminal coiled-coil domain and locates to the cell plasma membrane during TNF-induced necroptosis. By generating different MLKL mutants, we demonstrated that the plasma membrane localization of trimerized MLKL is critical for mediating necroptosis. Importantly, we found that the membrane localization of MLKL is essential for Ca2+ influx, which is an early event of TNF-induced necroptosis. Furthermore, we identified that TRPM7 (transient receptor potential melastatin related 7) is a MLKL downstream target for the mediation of Ca2+ influx and TNF-induced necroptosis. Hence, our study reveals a crucial mechanism of MLKL-mediated TNF-induced necroptosis.


Nature Cell Biology | 2000

p53 is associated with cellular microtubules and is transported to the nucleus by dynein.

Paraskevi Giannakakou; Dan L. Sackett; Yvona Ward; Kevin R. Webster; Mikhail V. Blagosklonny; Tito Fojo

Here we show that p53 protein is physically associated with tubulin in vivo and in vitro, and that it localizes to cellular microtubules. Treatment with vincristine or paclitaxel before DNA-damage or before leptomycin B treatment reduces nuclear accumulation of p53 and expression of mdm2 and p21. Overexpression of dynamitin or microinjection of anti-dynein antibody before DNA damage abrogates nuclear accumulation of p53. Our results indicate that transport of p53 along microtubules is dynein-dependent. The first 25 amino acids of p53 contain the residues that are essential for binding to microtubules. We propose that functional microtubules and the dynein motor protein participate in transport of p53 and facilitate its accumulation in the nucleus after DNA damage.


Journal of Cell Biology | 2002

The GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway

Yvona Ward; Seow-Fong Yap; V. Ravichandran; Fumio Matsumura; Masaaki Ito; Beth Spinelli; Kathleen Kelly

The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for which biochemical functions have been mostly unknown. Here we show that Gem and Rad interface with the Rho pathway through association with the Rho effectors, Rho kinase (ROK) α and β. Gem binds ROKβ independently of RhoA in the ROKβ coiled-coil region adjacent to the Rho binding domain. Expression of Gem inhibited ROKβ-mediated phosphorylation of myosin light chain and myosin phosphatase, but not LIM kinase, suggesting that Gem acts by modifying the substrate specificity of ROKβ. Gem or Rad expression led to cell flattening and neurite extension in N1E-115 neuroblastoma cells. In interference assays, Gem opposed ROKβ- and Rad opposed ROKα-mediated cell rounding and neurite retraction. Gem did not oppose cell rounding initiated by ROKβ containing a deletion of the Gem binding region, demonstrating that Gem binding to ROKβ is required for the effects observed. In epithelial or fibroblastic cells, Gem or Rad expression resulted in stress fiber and focal adhesion disassembly. In addition, Gem reverted the anchorage-independent growth and invasiveness of Dbl-transformed fibroblasts. These results identify physiological roles for Gem and Rad in cytoskeletal regulation mediated by ROK.


Molecular and Cellular Biology | 2001

Signal Pathways Which Promote Invasion and Metastasis: Critical and Distinct Contributions of Extracellular Signal-Regulated Kinase and Ral-Specific Guanine Exchange Factor Pathways

Yvona Ward; Warner Wang; Elisa C. Woodhouse; Ilona Linnoila; Lance A. Liotta; Kathleen Kelly

ABSTRACT Approximately 50% of metastatic tumors contain Ras mutations. Ras proteins can activate at least three downstream signaling cascades mediated by the Raf–MEK–extracellular signal-regulated kinase family, phosphatidylinositol-3 (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (RalGEFs). Here we investigated the contribution of RalGEF and ERK activation to the development of experimental metastasis in vivo and associated invasive properties in vitro. Each pathway contributes distinct properties to the metastatic phenotype. Following lateral tail vein injection, 3T3 cells transformed by constitutively active Raf or MEK produced lung metastasis that displayed circumscribed, noninfiltrating borders. In contrast, 3T3 cells transformed by Ras(12V,37G), a Ras effector mutant that activates RalGEF but not Raf or P13 kinase, formed aggressive, infiltrative metastasis. Dominant negative RalB inhibited Ras(12V,37G)-activated invasion and metastasis, demonstrating the necessity of the RalGEF pathway for a fully transformed phenotype. Moreover, 3T3 cells constitutively expressing a membrane-associated form of RalGEF (RalGDS-CAAX) formed invasive tumors as well, demonstrating that activation of a RalGEF pathway is sufficient to initiate the invasive phenotype. Despite the fact that Ras(12V,37G) expression does not elevate ERK activity, inhibition of this kinase by a conditionally expressed ERK phosphatase demonstrated that ERK activity was necessary for Ras(12V,37G)-transformed cells to express matrix-degrading activity in vitro and tissue invasiveness in vivo. Therefore, these experiments have revealed a hitherto-unknown but essential interaction of the RalGEF and ERK pathways to produce a malignant phenotype. The generality of the role of the RalGEF pathway in metastasis is supported by the finding that Ras(12V,37G) increased the invasiveness of epithelial cells as well as fibroblasts.


Molecular and Cellular Biology | 2001

Identification and functional characterization of neo-poly(A) polymerase, an RNA processing enzyme overexpressed in human tumors.

Suzanne L. Topalian; Syuzo Kaneko; Monica Gonzales; Gareth L. Bond; Yvona Ward; James L. Manley

ABSTRACT Poly(A) polymerase (PAP) plays an essential role in polyadenylation of mRNA precursors, and it has long been thought that mammalian cells contain only a single PAP gene. We describe here the unexpected existence of a human PAP, which we call neo-PAP, encoded by a previously uncharacterized gene. cDNA was isolated from a tumor-derived cDNA library encoding an 82.8-kDa protein bearing 71% overall similarity to human PAP. Strikingly, the organization of the two PAP genes is nearly identical, indicating that they arose from a common ancestor. Neo-PAP and PAP were indistinguishable in in vitro assays of both specific and nonspecific polyadenylation and also endonucleolytic cleavage. Neo-PAP produced by transfection was exclusively nuclear, as demonstrated by immunofluorescence microscopy. However, notable sequence divergence between the C-terminal domains of neo-PAP and PAP suggested that the two enzymes might be differentially regulated. While PAP is phosphorylated throughout the cell cycle and hyperphosphorylated during M phase, neo-PAP did not show evidence of phosphorylation on Western blot analysis, which was unexpected in the context of a conserved cyclin recognition motif and multiple potential cyclin-dependent kinase (cdk) phosphorylation sites. Intriguingly, Northern blot analysis demonstrated that each PAP displayed distinct mRNA splice variants, and both PAP mRNAs were significantly overexpressed in human cancer cells compared to expression in normal or virally transformed cells. Neo-PAP may therefore be an important RNA processing enzyme that is regulated by a mechanism distinct from that utilized by PAP.


Cancer Research | 2004

Tissue Inhibitors of Metalloproteinase 2 Inhibits Endothelial Cell Migration through Increased Expression of RECK

Junseo Oh; Dong-Wan Seo; Tere Diaz; Beiyang Wei; Yvona Ward; Jill Ray; Yoko Morioka; Shuliang Shi; Hitoshi Kitayama; Chiaki Takahashi; Makoto Noda; William G. Stetler-Stevenson

The antiangiogenic function of the tissue inhibitors of metalloproteinases (TIMPs) has been attributed to their matrix metalloproteinase inhibitory activity. Here we demonstrate that TIMP-1 but not Ala+TIMP-1 inhibits both basal and vascular endothelial growth factor (VEGF)-stimulated migration of human microvascular endothelial cells (hMVECs), suggesting that this effect is dependent on direct inhibition of matrix metalloproteinase (MMP) activity. In contrast, TIMP-2 and mutant Ala+TIMP-2, which is devoid of MMP inhibitory activity, block hMVEC migration in response to VEGF-A stimulation. TIMP-2 and Ala+TIMP-2 also suppress basal hMVEC migration via a time-dependent mechanism mediated by enhanced expression of RECK, a membrane-anchored MMP inhibitor, which, in turn, inhibits cell migration. TIMP-2 treatment of hMVECs increases the association of Crk with C3G, resulting in enhanced Rap1 activation. hMVECs stably expressing Rap1 have increased RECK expression and display reduced cell migration compared with those expressing inactive Rap1(38N). RECK-null murine embryo fibroblasts fail to demonstrate TIMP-2–mediated decrease in cell migration despite activation of Rap1. TIMP-2–induced RECK decreases cell-associated MMP activity. Anti-RECK antibody increases MMP activity and reverses the TIMP-2–mediated reduction in cell migration. The effects of TIMP-2 on RECK expression and cell migration were confirmed in A2058 melanoma cells. These results suggest that TIMP-2 can inhibit cell migration via several distinct mechanisms. First, TIMP-2 can inhibit cell migration after VEGF stimulation by direct inhibition of MMP activity induced in response to VEGF stimulation. Secondly, TIMP-2 can disrupt VEGF signaling required for initiation of hMVEC migration. Third, TIMP-2 can enhance expression of RECK via Rap1 signaling resulting in an indirect, time-dependent inhibition of endothelial cell migration.


Cancer Research | 2011

LPA Receptor Heterodimerizes with CD97 to Amplify LPA-Initiated RHO-Dependent Signaling and Invasion in Prostate Cancer Cells

Yvona Ward; Ross Lake; Juan Juan Yin; Christopher Heger; Mark Raffeld; Paul Goldsmith; Maria J. Merino; Kathleen A. Kelly

CD97, an adhesion-linked G-protein-coupled receptor (GPCR), is induced in multiple epithelial cancer lineages. We address here the signaling properties and the functional significance of CD97 expression in prostate cancer. Our findings show that CD97 signals through Gα12/13 to increase RHO-GTP levels. CD97 functioned to mediate invasion in prostate cancer cells, at least in part, by associating with lysophosphatidic acid receptor 1 (LPAR1), leading to enhanced LPA-dependent RHO and extracellular signal-regulated kinase activation. Consistent with its role in invasion, depletion of CD97 in PC3 cells resulted in decreased bone metastasis without affecting subcutaneous tumor growth. Furthermore, CD97 heterodimerized and functionally synergized with LPAR1, a GPCR implicated in cancer progression. We also found that CD97 and LPAR expression were significantly correlated in clinical prostate cancer specimens. Taken together, these findings support the investigation of CD97 as a potential therapeutic cancer target.


Endocrinology | 2000

Coexpression of Receptors for Adrenomedullin, Calcitonin Gene-Related Peptide, and Amylin in Pancreatic β-Cells1

Alfredo Martínez; Supriya Kapas; Mae-Jean Miller; Yvona Ward; Frank Cuttitta

Three receptors have been characterized by their ability to bind adrenomedullin (AM): L1, RDC1, and CRLR. Immunohistochemical analysis and RT-PCR showed that all three receptors are expressed by the insulin-producing cells of the islets of Langerhans. RDC1 and CRLR in the presence of particular modifying proteins can also bind calcitonin gene-related peptide (CGRP). Such data suggest that the inhibitory effect caused by both AM and CGRP on insulin secretion is mediated by a direct interaction with the β-cell. We also identified receptors for amylin, the third member of the AM peptide family, in mouse insulin-secreting cells. The β-cells located closer to the periphery of the islets had a stronger immunoreactivity for the AM/CGRP receptors. This observation could be related to a paracrine mechanism, given the proximity of AM- and CGRP-secreting cells (F and δ-cells, respectively), which are located at the periphery of the islets. Interestingly, the smooth muscle cells in the pancreatic vasculature expresse...


Cell Cycle | 2008

Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells : A possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition

Marianne S. Poruchynsky; Dan L. Sackett; Robert W. Robey; Yvona Ward; Christina M. Annunziata; Tito Fojo

Bortezomib (Velcade®), a proteasome inhibitor, is approved by the FDA for the treatment of multiple myeloma (MM). While effective, its use has been hampered by peripheral neurotoxicity of unexplained etiology. Since proteasome inhibitors alter protein degradation, we speculated that proteins regulating microtubule (MT) stability may be affected after treatment and examined MT polymerization in cells by comparing the distribution of tubulin between polymerized (P) and soluble (S) fractions. We observed increased MT polymerization following treatment of SY5Y and KCNR [neuroblastoma], HCN2, and 8226 [MM] cells, using five proteasome inhibitors; the baseline proportion of total α-tubulin in ‘P’ fractions ranged from ~41-68%, and increased to ~55-99% after treatment. Increased acetylated α-tubulin, a post-translational marker of stabilized MTs, was observed in the neural cell lines HCN1A and HCN2 and this was sustained up to 144 hours after the proteasome inhibitor was removed. Cell cycle analysis of three cell lines after treatment, showed ~50-75% increases in the G2M phase. Immunofluorescent localization studies of proteasome inhibitor treated cells did not reveal microtubule bundles in contrast to paclitaxel treated, suggesting MT stabilization via a mechanism other than direct drug binding. We examined the levels of microtubule associated proteins and observed a 1.4-3.7 fold increase in the microtubule associated protein MAP2, in HCN2 cells following treatment with proteasome inhibitors. These data provide a plausible explanation for the neurotoxicity observed clinically and raise the possibility that microtubule stabilization contributes to cytotoxicity.


Biochemical Pharmacology | 2001

Accompanying protein alterations in malignant cells with a microtubule-polymerizing drug-resistance phenotype and a primary resistance mechanism

Marianne S. Poruchynsky; Paraskevi Giannakakou; Yvona Ward; J. Chloë Bulinski; William G. Telford; Robert W. Robey; Tito Fojo

Microtubules (MTs) are cytoskeletal components whose structural integrity is mandatory for the execution of many basic cell functions. Utilizing parental and drug-resistant ovarian carcinoma cell lines that have acquired point mutations in beta-tubulin and p53, we studied the level of expression and modification of proteins involved in apoptosis and MT integrity. Extending previous results, we demonstrated phosphorylation of pro-survival Bcl-x(L) in an epothilone-A resistant cell line, correlating it with drug sensitivity to tubulin-active compounds. Furthermore, Mcl-1 protein turned over more rapidly following exposure to tubulin-modifying agents, the stability of Mcl-1 protein paralleling the drug sensitivity profile of the paclitaxel or epothilone-A resistant cell lines. The observed decreases in Mcl-1 were not a consequence of G(2)M arrest, as determined by flow cytometry analysis, which showed prominent levels of Mcl-1 in the absence of any drug treatment in populations enriched in mitotic cells. We also observed that a paclitaxel-resistant cell line expressed Bax at a much lower level than the sensitive parental line [A2780(1A9)], consistent with its mutant p53 status. MT-associated protein-4 (MAP4), whose phosphorylation during specific phases of the cell cycle reduces its MT-polymerizing and -stabilizing capabilities, was phosphorylated in response to drug challenge without a change in expression. Phosphorylation of MAP4 correlated with sensitivity to tubulin-binding drugs and with a dissociation from MTs. We propose that the tubulin mutations, which result in a compromised paclitaxel:tubulin or epothilone:tubulin interaction and paclitaxel or epothilone resistance, indirectly inhibit downstream events that lead to cell death, and this, in turn, may contribute to the drug-resistance phenotype

Collaboration


Dive into the Yvona Ward's collaboration.

Top Co-Authors

Avatar

Robert W. Robey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ross Lake

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kathleen Kelly

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Akina Tamaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam C. Poirier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ofelia A. Olivero

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Susan E. Bates

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dan L. Sackett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Orsolya Polgar

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge