Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne Cohen is active.

Publication


Featured researches published by Yvonne Cohen.


Science Translational Medicine | 2016

Quantifying prion disease penetrance using large population control cohorts

Eric Vallabh Minikel; Sonia M. Vallabh; Monkol Lek; Karol Estrada; Kaitlin E. Samocha; J. Fah Sathirapongsasuti; Cory Y. McLean; Joyce Y. Tung; Linda P C Yu; Pierluigi Gambetti; Janis Blevins; Shulin Zhang; Yvonne Cohen; Wei Chen; Masahito Yamada; Tsuyoshi Hamaguchi; Nobuo Sanjo; Hidehiro Mizusawa; Yosikazu Nakamura; Tetsuyuki Kitamoto; Steven J. Collins; Alison Boyd; Robert G. Will; Richard Knight; Claudia Ponto; Inga Zerr; Theo F. J. Kraus; Sabina Eigenbrod; Armin Giese; Miguel Calero

Large genomic reference data sets reveal a spectrum of pathogenicity in the prion protein gene and provide genetic validation for a therapeutic strategy in prion disease. Share trumps rare No longer just buzz words, “patient empowerment” and “data sharing” are enabling breakthrough research on rare genetic diseases. Although more than 100,000 genetic variants are believed to drive disease in humans, little is known about penetrance—the probability that a mutation will actually cause disease in the carrier. This conundrum persists because small sample sizes breed imperfect alliance estimates between mutations and disease risk. Now, a patient-turned-scientist joined with a large bioinformatics team to analyze vast amounts of shared data—from the Exome Aggregation Consortium and the 23andMe database—to provide insights into genetic-variant penetrance and possible treatment approaches for a rare, fatal genetic prion disease. More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance—the probability that a carrier of the purported disease-causing genotype will indeed develop the disease—is generally unknown. We assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30 times more common in the population than expected on the basis of genetic prion disease prevalence. Although some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1 to ~100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, a finding that supports the safety of therapeutic suppression of prion protein expression.


Brain | 2009

Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt–Jakob disease: its effect on the phenotype and prion-type characteristics

Ignazio Cali; Rudolph J. Castellani; Amer Alshekhlee; Yvonne Cohen; Janis Blevins; Jue Yuan; Jan Langeveld; Piero Parchi; Jiri G. Safar; Wen Quan Zou; Pierluigi Gambetti

Five phenotypically distinct subtypes have been identified in sporadic Creutzfeldt-Jakob disease (sCJD), based on the methionine/valine polymorphic genotype of codon 129 of the prion protein (PrP) gene and the presence of either one of the two protease K-resistant scrapie prion protein (PrP(Sc)) types identified as 1 and 2. The infrequent co-existence of both PrP(Sc) types in the same case has been known for a long time. Recently, it has been reported, using type-specific antibodies, that the PrP(Sc) type 1 is present in all cases of sCJD carrying PrP(Sc) type 2. The consistent co-occurrence of both PrP(Sc) types complicates the diagnosis and the current classification of sCJD, and has implications for the pathogenesis of naturally occurring prion diseases. In the present study, we investigated the prevalence of PrP(Sc) types 1 and 2 co-occurrence, along with its effects on the disease phenotype and PrP(Sc) strain characteristics, comparatively analysing 34 cases of sCJD, all methionine homozygous at codon 129 of the PrP gene (sCJDMM). To minimize overestimating the prevalence of the sCJDMM cases carrying PrP(Sc) types 1 and 2 (sCJDMM1-2), we used proteinase K concentrations designed to hydrolyse all fragments resulting from an incomplete digestion, while preserving the protease-resistant PrP(Sc) core. Furthermore, we used several antibodies to maximize the detection of both PrP(Sc) types. Our data show that sCJDMM cases associated exclusively with either PrP(Sc) type 1 (sCJDMM1) or PrP(Sc) type 2 (sCJDMM2) do exist; we estimate that they account for approximately 56% and 5% of all the sCJDMM cases, respectively; while in 39% of the cases, both PrP(Sc) types 1 and 2 are present together (sCJDMM1-2) either mixed in the same anatomical region or separate in different regions. Clinically, sCJDMM1-2 had an average disease duration intermediate between the other two sCJDMM subtypes. The histopathology was also intermediate, except for the cerebellum where it resembled that of sCJDMM1. These features, along with the PrP immunostaining pattern, offer a diagnostic clue. We also observed a correlation between the disease duration and the prevalence of PrP(Sc) type 2 and sCJDMM2 phenotypes. The use of different antibodies and of the conformational stability immunoassay indicated that the co-existence of types 1 and 2 in the same anatomical region may confer special conformational characteristics to PrP(Sc) types 1 and 2. All of these findings indicate that sCJDMM1-2 should be considered as a separate entity at this time.


Brain | 2015

Rapidly progressive Alzheimer's disease features distinct structures of amyloid-β.

Mark L. Cohen; Chae Kim; Tracy Haldiman; Mohamed ElHag; Prachi Mehndiratta; Termsarasab Pichet; Frances M. Lissemore; Michelle Shea; Yvonne Cohen; Wei Chen; Janis Blevins; Brian S. Appleby; Krystyna Surewicz; Witold K. Surewicz; Martha Sajatovic; Curtis Tatsuoka; Shulin Zhang; Ping Mayo; Mariusz Butkiewicz; Jonathan L. Haines; Alan J. Lerner; Jiri G. Safar

Genetic and environmental factors that increase the risk of late-onset Alzheimer disease are now well recognized but the cause of variable progression rates and phenotypes of sporadic Alzheimers disease is largely unknown. We aimed to investigate the relationship between diverse structural assemblies of amyloid-β and rates of clinical decline in Alzheimers disease. Using novel biophysical methods, we analysed levels, particle size, and conformational characteristics of amyloid-β in the posterior cingulate cortex, hippocampus and cerebellum of 48 cases of Alzheimers disease with distinctly different disease durations, and correlated the data with APOE gene polymorphism. In both hippocampus and posterior cingulate cortex we identified an extensive array of distinct amyloid-β42 particles that differ in size, display of N-terminal and C-terminal domains, and conformational stability. In contrast, amyloid-β40 present at low levels did not form a major particle with discernible size, and both N-terminal and C- terminal domains were largely exposed. Rapidly progressive Alzheimers disease that is associated with a low frequency of APOE e4 allele demonstrates considerably expanded conformational heterogeneity of amyloid-β42, with higher levels of distinctly structured amyloid-β42 particles composed of 30-100 monomers, and fewer particles composed of < 30 monomers. The link between rapid clinical decline and levels of amyloid-β42 with distinct structural characteristics suggests that different conformers may play an important role in the pathogenesis of distinct Alzheimers disease phenotypes. These findings indicate that Alzheimers disease exhibits a wide spectrum of amyloid-β42 structural states and imply the existence of prion-like conformational strains.


PLOS Pathogens | 2012

Small Protease Sensitive Oligomers of PrPSc in Distinct Human Prions Determine Conversion Rate of PrPC

Chae Kim; Tracy Haldiman; Krystyna Surewicz; Yvonne Cohen; Wei Chen; Janis Blevins; Man Sun Sy; Mark L. Cohen; Qingzhong Kong; Glenn C. Telling; Witold K. Surewicz; Jiri G. Safar

The mammalian prions replicate by converting cellular prion protein (PrPC) into pathogenic conformational isoform (PrPSc). Variations in prions, which cause different disease phenotypes, are referred to as strains. The mechanism of high-fidelity replication of prion strains in the absence of nucleic acid remains unsolved. We investigated the impact of different conformational characteristics of PrPSc on conversion of PrPC in vitro using PrPSc seeds from the most frequent human prion disease worldwide, the Creutzfeldt-Jakob disease (sCJD). The conversion potency of a broad spectrum of distinct sCJD prions was governed by the level, conformation, and stability of small oligomers of the protease-sensitive (s) PrPSc. The smallest most potent prions present in sCJD brains were composed only of∼20 monomers of PrPSc. The tight correlation between conversion potency of small oligomers of human sPrPSc observed in vitro and duration of the disease suggests that sPrPSc conformers are an important determinant of prion strain characteristics that control the progression rate of the disease.


PLOS Pathogens | 2011

Protease-Sensitive Conformers in Broad Spectrum of Distinct PrPSc Structures in Sporadic Creutzfeldt-Jakob Disease Are Indicator of Progression Rate

Chae Kim; Tracy Haldiman; Yvonne Cohen; Wei Chen; Janis Blevins; Man Sun Sy; Mark L. Cohen; Jiri G. Safar

The origin, range, and structure of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), are largely unknown. To investigate the molecular mechanism responsible for the broad phenotypic variability of sCJD, we analyzed the conformational characteristics of protease-sensitive and protease-resistant fractions of the pathogenic prion protein (PrPSc) using novel conformational methods derived from a conformation-dependent immunoassay (CDI). In 46 brains of patients homozygous for polymorphisms in the PRNP gene and exhibiting either Type 1 or Type 2 western blot pattern of the PrPSc, we identified an extensive array of PrPSc structures that differ in protease sensitivity, display of critical domains, and conformational stability. Surprisingly, in sCJD cases homozygous for methionine or valine at codon 129 of the PRNP gene, the concentration and stability of protease-sensitive conformers of PrPSc correlated with progression rate of the disease. These data indicate that sCJD brains exhibit a wide spectrum of PrPSc structural states, and accordingly argue for a broad spectrum of prion strains coding for different phenotypes. The link between disease duration, levels, and stability of protease-sensitive conformers of PrPSc suggests that these conformers play an important role in the pathogenesis of sCJD.


Annals of Neurology | 2017

Diagnostic and prognostic value of human prion detection in cerebrospinal fluid

Aaron Foutz; Brian S. Appleby; Clive R. Hamlin; Xiaoqin Liu; Sheng Yang; Yvonne Cohen; Wei Chen; Janis Blevins; Cameron Fausett; Han Wang; Pierluigi Gambetti; Shulin Zhang; Andrew G. Hughson; Curtis Tatsuoka; Lawrence B. Schonberger; Mark L. Cohen; Byron Caughey; Jiri G. Safar

Several prion amplification systems have been proposed for detection of prions in cerebrospinal fluid (CSF), most recently, the measurements of prion seeding activity with second‐generation real‐time quaking‐induced conversion (RT‐QuIC). The objective of this study was to investigate the diagnostic performance of the RT‐QuIC prion test in the broad phenotypic spectrum of prion diseases.


Journal of Biological Chemistry | 2013

Co-existence of Distinct Prion Types Enables Conformational Evolution of Human PrPSc by Competitive Selection

Tracy Haldiman; Chae Kim; Yvonne Cohen; Wei Chen; Janis Blevins; Liuting Qing; Mark L. Cohen; Jan Langeveld; Glenn C. Telling; Qingzhong Kong; Jiri G. Safar

Background: Mechanism of prion adaptation and evolution has not been fully elucidated. Results: Distinct human prion particles co-exist and undergo competitive selection during replication. Conclusion: The process is governed by preferential replication of the least stable pathogenic conformers. Significance: The spectrum of conformers in wild human prion isolates enables adaptation and evolution by selection of the progressively less stable and faster replicating subset. The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrPSc). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrPSc particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrPSc particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrPC substrate, the dominant PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrPSc is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrPSc conformers.


Emerging Infectious Diseases | 2014

Transmission Characteristics of Variably Protease-Sensitive Prionopathy

Silvio Notari; Xiangzhu Xiao; Juan Carlos Espinosa; Yvonne Cohen; Liuting Qing; Patricia Aguilar-Calvo; Diane Kofskey; Ignazio Cali; Laura Cracco; Qingzhong Kong; Juan Maria Torres; Wen Quan Zou; Pierluigi Gambetti

This disease is transmissible and thus an authentic prion disease.


PLOS Pathogens | 2015

Structural Determinants of Phenotypic Diversity and Replication Rate of Human Prions

Jiri G. Safar; Xiangzhu Xiao; Mohammad E. Kabir; Shugui Chen; Chae Kim; Tracy Haldiman; Yvonne Cohen; Wei Chen; Mark L. Cohen; Witold K. Surewicz

The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD), determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D) exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data) as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains). Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates.


Emerging Infectious Diseases | 2015

Recent US Case of Variant Creutzfeldt-Jakob Disease—Global Implications

Atul Maheshwari; Michael Fischer; Pierluigi Gambetti; Alicia Parker; Aarthi Ram; Claudio Soto; Luis Concha-Marambio; Yvonne Cohen; Ermias D. Belay; Ryan A. Maddox; Simon Mead; Clay Goodman; Lawrence B. Schonberger; Haitham M. Hussein

A recently diagnosed case highlights the need for continued global surveillance.

Collaboration


Dive into the Yvonne Cohen's collaboration.

Top Co-Authors

Avatar

Jiri G. Safar

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Wei Chen

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Mark L. Cohen

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Chae Kim

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Tracy Haldiman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Janis Blevins

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Pierluigi Gambetti

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Witold K. Surewicz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Xiangzhu Xiao

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Mohammad E. Kabir

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge