Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne D. Krom is active.

Publication


Featured researches published by Yvonne D. Krom.


Nature Genetics | 2012

Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2

Richard J.L.F. Lemmers; Rabi Tawil; Lisa M. Petek; Judit Balog; Gregory J. Block; Gijs W.E. Santen; Amanda M. Amell; Patrick J. van der Vliet; Rowida Almomani; Kirsten R. Straasheijm; Yvonne D. Krom; Rinse Klooster; Yu-chun Sun; Johan T. den Dunnen; Quinta Helmer; Colleen M. Donlin-Smith; George W. Padberg; Baziel G.M. van Engelen; Jessica C. de Greef; Annemieke Aartsma-Rus; Rune R. Frants; Marianne de Visser; Claude Desnuelle; Sabrina Sacconi; Galina N. Filippova; Bert Bakker; Michael J. Bamshad; Stephen J. Tapscott; Daniel G. Miller; Silvère M. van der Maarel

Facioscapulohumeral dystrophy (FSHD) is characterized by chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4 and expression of the D4Z4-encoded DUX4 gene in skeletal muscle. The more common form, autosomal dominant FSHD1, is caused by contraction of the D4Z4 array, whereas the genetic determinants and inheritance of D4Z4 array contraction–independent FSHD2 are unclear. Here, we show that mutations in SMCHD1 (encoding structural maintenance of chromosomes flexible hinge domain containing 1) on chromosome 18 reduce SMCHD1 protein levels and segregate with genome-wide D4Z4 CpG hypomethylation in human kindreds. FSHD2 occurs in individuals who inherited both the SMCHD1 mutation and a normal-sized D4Z4 array on a chromosome 4 haplotype permissive for DUX4 expression. Reducing SMCHD1 levels in skeletal muscle results in D4Z4 contraction–independent DUX4 expression. Our study identifies SMCHD1 as an epigenetic modifier of the D4Z4 metastable epiallele and as a causal genetic determinant of FSHD2 and possibly other human diseases subject to epigenetic regulation.


PLOS Genetics | 2013

Intrinsic epigenetic regulation of the D4Z4 macrosatellite repeat in a transgenic mouse model for FSHD.

Yvonne D. Krom; Peter E. Thijssen; Janet M. Young; Bianca den Hamer; Judit Balog; Zizhen Yao; Lisa Maves; Lauren Snider; Paul Knopp; Peter S. Zammit; Tonnie Rijkers; Baziel G.M. van Engelen; George W. Padberg; Rune R. Frants; Rabi Tawil; Stephen J. Tapscott; Silvère M. van der Maarel

Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy caused by decreased epigenetic repression of the D4Z4 macrosatellite repeats and ectopic expression of DUX4, a retrogene encoding a germline transcription factor encoded in each repeat. Unaffected individuals generally have more than 10 repeats arrayed in the subtelomeric region of chromosome 4, whereas the most common form of FSHD (FSHD1) is caused by a contraction of the array to fewer than 10 repeats, associated with decreased epigenetic repression and variegated expression of DUX4 in skeletal muscle. We have generated transgenic mice carrying D4Z4 arrays from an FSHD1 allele and from a control allele. These mice recapitulate important epigenetic and DUX4 expression attributes seen in patients and controls, respectively, including high DUX4 expression levels in the germline, (incomplete) epigenetic repression in somatic tissue, and FSHD–specific variegated DUX4 expression in sporadic muscle nuclei associated with D4Z4 chromatin relaxation. In addition we show that DUX4 is able to activate similar functional gene groups in mouse muscle cells as it does in human muscle cells. These transgenic mice therefore represent a valuable animal model for FSHD and will be a useful resource to study the molecular mechanisms underlying FSHD and to test new therapeutic intervention strategies.


American Journal of Pathology | 2012

Generation of Isogenic D4Z4 Contracted and Noncontracted Immortal Muscle Cell Clones from a Mosaic Patient: A Cellular Model for FSHD

Yvonne D. Krom; Julie Dumonceaux; Kamel Mamchaoui; Bianca den Hamer; Virginie Mariot; Elisa Negroni; Linda N. Geng; Nicolas Martin; Rabi Tawil; Stephen J. Tapscott; Baziel G.M. van Engelen; Vincent Mouly; Gillian Butler-Browne; Silvère M. van der Maarel

In most cases facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat in the 4q subtelomere. This contraction is associated with local chromatin decondensation and derepression of the DUX4 retrogene. Its complex genetic and epigenetic cause and high clinical variability in disease severity complicate investigations on the pathogenic mechanism underlying FSHD. A validated cellular model bypassing the considerable heterogeneity would facilitate mechanistic and therapeutic studies of FSHD. Taking advantage of the high incidence of somatic mosaicism for D4Z4 repeat contraction in de novo FSHD, we have established a clonal myogenic cell model from a mosaic patient. Individual clones are genetically identical except for the size of the D4Z4 repeat array, being either normal or FSHD sized. These clones retain their myogenic characteristics, and D4Z4 contracted clones differ from the noncontracted clones by the bursts of expression of DUX4 in sporadic nuclei, showing that this burst-like phenomenon is a locus-intrinsic feature. Consequently, downstream effects of DUX4 expression can be observed in D4Z4 contracted clones, like differential expression of DUX4 target genes. We also show their participation to in vivo regeneration with immunodeficient mice, further expanding the potential of these clones for mechanistic and therapeutic studies. These cell lines will facilitate pairwise comparisons to identify FSHD-specific differences and are expected to create new opportunities for high-throughput drug screens.


Epigenetics | 2015

Increased DUX4 expression during muscle differentiation correlates with decreased SMCHD1 protein levels at D4Z4

Judit Balog; Peter E. Thijssen; Sean C. Shadle; Kirsten R. Straasheijm; Patrick J. van der Vliet; Yvonne D. Krom; Marlinde L. van den Boogaard; Annika de Jong; Richard J.L.F. Lemmers; Rabi Tawil; Stephen J. Tapscott; Silvère M. van der Maarel

Facioscapulohumeral muscular dystrophy is caused by incomplete epigenetic repression of the transcription factor DUX4 in skeletal muscle. A copy of DUX4 is located within each unit of the D4Z4 macrosatellite repeat array and its derepression in somatic cells is caused by either repeat array contraction (FSHD1) or by mutations in the chromatin repressor SMCHD1 (FSHD2). While DUX4 expression has thus far only been detected in FSHD muscle and muscle cell cultures, and increases with in vitro myogenic differentiation, the D4Z4 chromatin structure has only been studied in proliferating myoblasts or non-myogenic cells. We here show that SMCHD1 protein levels at D4Z4 decline during muscle cell differentiation and correlate with DUX4 derepression. In FSHD2, but not FSHD1, the loss of SMCHD1 repressor activity is partially compensated by increased Polycomb Repressive Complex 2 (PRC2)–mediated H3K27 trimethylation at D4Z4, a situation that can be mimicked by SMCHD1 knockdown in control myotubes. In contrast, moderate overexpression of SMCHD1 results in DUX4 silencing in FSHD1 and FSHD2 myotubes demonstrating that DUX4 derepression in FSHD is reversible. Together, we show that in FSHD1 and FSHD2 the decline in SMCHD1 protein levels during muscle cell differentiation renders skeletal muscle sensitive to DUX4.


Journal of Cell Science | 2016

DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis

Paul Knopp; Yvonne D. Krom; Christopher R. S. Banerji; Maryna Panamarova; Louise A. Moyle; Bianca den Hamer; Silvère M. van der Maarel; Peter S. Zammit

ABSTRACT Skeletal muscle wasting in facioscapulohumeral muscular dystrophy (FSHD) results in substantial morbidity. On a disease-permissive chromosome 4qA haplotype, genomic and/or epigenetic changes at the D4Z4 macrosatellite repeat allows transcription of the DUX4 retrogene. Analysing transgenic mice carrying a human D4Z4 genomic locus from an FSHD-affected individual showed that DUX4 was transiently induced in myoblasts during skeletal muscle regeneration. Centromeric to the D4Z4 repeats is an inverted D4Z4 unit encoding DUX4c. Expression of DUX4, DUX4c and DUX4 constructs, including constitutively active, dominant-negative and truncated versions, revealed that DUX4 activates target genes to inhibit proliferation and differentiation of satellite cells, but that it also downregulates target genes to suppress myogenic differentiation. These transcriptional changes elicited by DUX4 in mouse have significant overlap with genes regulated by DUX4 in man. Comparison of DUX4 and DUX4c transcriptional perturbations revealed that DUX4 regulates genes involved in cell proliferation, whereas DUX4c regulates genes engaged in angiogenesis and muscle development, with both DUX4 and DUX4c modifing genes involved in urogenital development. Transcriptomic analysis showed that DUX4 operates through both target gene activation and repression to orchestrate a transcriptome characteristic of a less-differentiated cell state. Summary: DUX4 underlies pathogenesis in facioscapulohumeral muscular dystrophy. DUX4 acts mainly as a transcriptional activator that inhibits myogenesis by orchestrating a gene expression profile representative of a more stem-cell-like state.


BMC Biotechnology | 2006

Efficient in vivo knock-down of estrogen receptor alpha: application of recombinant adenovirus vectors for delivery of short hairpin RNA

Yvonne D. Krom; Frits J. Fallaux; Ivo Que; Clemens W.G.M. Löwik; Ko Willems van Dijk

BackgroundAdenovirus (Ad) mediated gene transfer is a well-established tool to transiently express constructs in livers of mice in vivo. In the present study, we determined the specificity and efficiency of Ad vectors expressing short hairpin (sh) RNA constructs to knock-down the estrogen receptor α (ERα).ResultsTwo different shRNA constructs derived from the murine ERα coding sequence were designed (shERα). In vitro, transfection of three mouse cell lines with pSUPER-shERα constructs resulted in up to 80% reduction of endogenous ERα activity. A single mismatch in the target sequence eliminated the reduction of ERα activity, demonstrating the specificity of shERα. The subsequently generated Ad.shERα vectors were equally effective in vitro. In vivo, intravenous administration of Ad.shERα resulted in 70% reduced hepatic mouse ERα mRNA levels. Co-injection of Ad.shERα with an Ad vector containing a luciferase (luc) gene driven by an estrogen responsive element (ERE) containing promoter resulted in a significant (90% on day five) down-regulation of hepatic luciferase activity, as determined by non-invasive optical imaging. Down-regulation was sustained up to day seven post-injection.ConclusionAd mediated transfer of shERα expression constructs results in efficient and specific knockdown of endogenous ERα transcription both in vitro and in vivo.


Skeletal Muscle | 2015

Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9

Muhammad Riaz; Yotam Raz; Elizabeth B. Moloney; Maaike van Putten; Yvonne D. Krom; Silvère M. van der Maarel; Joost Verhaagen; Vered Raz

BackgroundGene therapy strategies are promising therapeutic options for monogenic muscular dystrophies, with several currently underways. The adeno-associated viral (AAV) vector is among the most effective gene delivery systems. However, transduction efficiency in skeletal muscles varies between AAV serotypes, with the underlying factors poorly understood. We hypothesized that myofiber-specific tropism differs between AAV serotypes.MethodsWe developed a quantitative histology procedure and generated myofiber pattern maps for four myosin heavy chain (MyHC) isotypes. We compared myofiber pattern maps between AAV6 or AAV9 injected tibialis anterior muscle in mice. We correlated MyHC expression with AAV-derived green fluorescence protein (GFP) expression using statistical models.ResultsWe found that MyHC-2x expressing myofibers display a significantly higher preference for AAV transduction, whereas MyHC-2b expressing myofibers negatively correlated with AAV transduction. In addition, we show that AAV9-mediated transduction is enriched in myofibers expressing MyHC-1 and MyHC-1/2a. Moreover, AAV9-mediated transduction can predominantly be predicted by the expression of MyHC isotypes. In contrast, AAV6 transduction can be predicted by myofiber size but not by myofiber types.ConclusionsOur findings identify differences between AAV6 and AAV9 for myofiber-type preferences, which could be an underlying factor for mosaic transduction of skeletal muscle. Adjusting AAV serotype for specific muscle conditions can therefore improve transduction efficacy in clinical applications.


PLOS Genetics | 2016

PABPN1-Dependent mRNA Processing Induces Muscle Wasting.

Muhammad Riaz; Yotam Raz; Maaike van Putten; Guillem Paniagua‐Soriano; Yvonne D. Krom; Bogdan I. Florea; Vered Raz

Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3’-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting.


Human Molecular Genetics | 2018

Smchd1 haploinsufficiency exacerbates the phenotype of a transgenic FSHD1 mouse model

Jessica C. de Greef; Yvonne D. Krom; Bianca den Hamer; Lauren Snider; Yosuke Hiramuki; Rob F.P. van den Akker; Kelsey Breslin; Miha Pakusch; Daniela Salvatori; Bram Slütter; Rabi Tawil; Marnie E. Blewitt; Stephen J. Tapscott; Silvère M. van der Maarel

In humans, a copy of the DUX4 retrogene is located in each unit of the D4Z4 macrosatellite repeat that normally comprises 8-100 units. The D4Z4 repeat has heterochromatic features and does not express DUX4 in somatic cells. Individuals with facioscapulohumeral muscular dystrophy (FSHD) have a partial failure of somatic DUX4 repression resulting in the presence of DUX4 protein in sporadic muscle nuclei. Somatic DUX4 derepression is caused by contraction of the D4Z4 repeat to 1-10 units (FSHD1) or by heterozygous mutations in genes responsible for maintaining the D4Z4 chromatin structure in a repressive state (FSHD2). One of the FSHD2 genes is the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene. SMCHD1 mutations have also been identified in FSHD1; patients carrying a contracted D4Z4 repeat and a SMCHD1 mutation are more severely affected than relatives with only a contracted repeat or a SMCHD1 mutation. To evaluate the modifier role of SMCHD1, we crossbred mice carrying a contracted D4Z4 repeat (D4Z4-2.5 mice) with mice that are haploinsufficient for Smchd1 (Smchd1MommeD1 mice). D4Z4-2.5/Smchd1MommeD1 mice presented with a significantly reduced body weight and developed skin lesions. The same skin lesions, albeit in a milder form, were also observed in D4Z4-2.5 mice, suggesting that reduced Smchd1 levels aggravate disease in the D4Z4-2.5 mouse model. Our study emphasizes the evolutionary conservation of the SMCHD1-dependent epigenetic regulation of the D4Z4 repeat array and further suggests that the D4Z4-2.5/Smchd1MommeD1 mouse model may be used to unravel the function of DUX4 in non-muscle tissues like the skin.


European Journal of Human Genetics | 2018

Deep characterization of a common D4Z4 variant identifies biallelic DUX4 expression as a modifier for disease penetrance in FSHD2

Richard J.L.F. Lemmers; P.J. van der Vliet; Judit Balog; Jelle J. Goeman; Wibowo Arindrarto; Yvonne D. Krom; Karlien Mul; B.G.M. van Engelen; Rabi Tawil; S.M. van der Maarel

Facioscapulohumeral muscular dystrophy is caused by incomplete repression of the transcription factor DUX4 in skeletal muscle as a consequence of D4Z4 macrosatellite repeat contraction in chromosome 4q35 (FSHD1) or variants in genes encoding D4Z4 chromatin repressors (FSHD2). A clinical hallmark of FSHD is variability in onset and progression suggesting the presence of disease modifiers. A well-known cis modifier is the polymorphic DUX4 polyadenylation signal (PAS) that defines FSHD permissive alleles: D4Z4 chromatin relaxation on non-permissive alleles which lack the DUX4-PAS cannot cause disease in the absence of stable DUX4 mRNA. We have explored the nature and relevance of a common variant of the major FSHD haplotype 4A161, which is defined by 1.6 kb size difference of the most distal D4Z4 repeat unit. While the short variant (4A161S) has been extensively studied, we demonstrate that the long variant (4A161L) is relatively common in the European population, is capable of expressing DUX4, but that DUX4 mRNA processing differs from 4A161S. While we do not find evidence for a difference in disease severity between FSHD carriers of an 4A161S or 4A161L allele, our study does uncover biallelic DUX4 expression in FSHD2 patients. Compared to control individuals, we observed an increased frequency of FSHD2 patients homozygous for disease permissive alleles, and who are thus capable of biallelic DUX4 expression, while SMCHD1 variant carriers with only one permissive allele were significantly more often asymptomatic. This suggests that biallelic DUX4 expression lowers the threshold for disease presentation and is a modifier for disease severity in FSHD2.

Collaboration


Dive into the Yvonne D. Krom's collaboration.

Top Co-Authors

Avatar

Silvère M. van der Maarel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rabi Tawil

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Tapscott

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Bianca den Hamer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Judit Balog

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rune R. Frants

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lauren Snider

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ko Willems van Dijk

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Richard J.L.F. Lemmers

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge