Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne Dempsie is active.

Publication


Featured researches published by Yvonne Dempsie.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Dynamic Changes in Lung MicroRNA Profiles During the Development of Pulmonary Hypertension due to Chronic Hypoxia and Monocrotaline

Paola Caruso; Margaret R. MacLean; Raya Khanin; John McClure; Elaine Soon; Mark Southgate; Robert A. MacDonald; Jenny A. Greig; Keith E. Robertson; Rachel Masson; Laura Denby; Yvonne Dempsie; Lu Long; Nicholas W. Morrell; Andrew H. Baker

Objective—MicroRNAs (miRNAs) are small noncoding RNAs that have the capacity to control protein production through binding “seed” sequences within a target mRNA. Each miRNA is capable of potentially controlling hundreds of genes. The regulation of miRNAs in the lung during the development of pulmonary arterial hypertension (PAH) is unknown. Methods and Results—We screened lung miRNA profiles in a longitudinal and crossover design during the development of PAH caused by chronic hypoxia or monocrotaline in rats. We identified reduced expression of Dicer, involved in miRNA processing, during the onset of PAH after hypoxia. MiR-22, miR-30, and let-7f were downregulated, whereas miR-322 and miR-451 were upregulated significantly during the development of PAH in both models. Differences were observed between monocrotaline and chronic hypoxia. For example, miR-21 and let-7a were significantly reduced only in monocrotaline-treated rats. MiRNAs that were significantly regulated were validated by quantitative polymerase chain reaction. By using in vitro studies, we demonstrated that hypoxia and growth factors implicated in PAH induced similar changes in miRNA expression. Furthermore, we confirmed miR-21 downregulation in human lung tissue and serum from patients with idiopathic PAH. Conclusion—Defined miRNAs are regulated during the development of PAH in rats. Therefore, miRNAs may contribute to the pathogenesis of PAH and represent a novel opportunity for therapeutic intervention.


Circulation | 2004

Overexpression of the 5-Hydroxytryptamine Transporter Gene Effect on Pulmonary Hemodynamics and Hypoxia-Induced Pulmonary Hypertension

Margaret R. MacLean; Graeme A. Deuchar; Martin N. Hicks; Ian Morecroft; Sanbing Shen; John Sheward; Janet Colston; Lynn Loughlin; Margaret Nilsen; Yvonne Dempsie; Anthony J. Harmar

Background—Increased serotonin (5-hydroxytryptamine, 5-HT) transporter activity has been observed in human familial pulmonary hypertension. Methods and Results—We investigated pulmonary hemodynamics and the development of hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling in mice overexpressing the gene for the 5-HT transporter (5-HTT+ mice). Right ventricular pressure was elevated 3-fold in normoxic 5-HTT+ mice compared with their wild-type controls. Hypoxia-induced increases in right ventricular hypertrophy and pulmonary vascular remodeling were also potentiated in the 5-HTT+ mice. 5-HTT–like immunoreactivity, protein, and binding sites were markedly increased in the lungs from the 5-HTT+ mice. Hypoxia, however, decreased 5-HT transporter immunoreactivity, mRNA transcription, protein, and binding sites in both wild-type and 5-HTT+ mice. Conclusions—Increased 5-HT transporter expression causes elevated right ventricular pressures, and this occurs before the onset of right ventricular hypertrophy or pulmonary arterial remodeling. Hypoxia-induced remodeling is, however, increased in 5-HTT+ mice, whereas hypoxia inhibits 5-HTT expression. This provides a unique model that demonstrates differential mechanisms for familial pulmonary arterial hypertension and pulmonary arterial hypertension with hypoxemia.


Circulation Research | 2012

A Role for miR-145 in Pulmonary Arterial Hypertension Evidence From Mouse Models and Patient Samples

Paola Caruso; Yvonne Dempsie; Hannah C. Stevens; Robert A. McDonald; Lu Long; Ruifang Lu; Kevin P. White; Kirsty M. Mair; John McClure; Mark Southwood; Paul D. Upton; Mei Xin; Eva van Rooij; Eric N. Olson; Nicholas W. Morrell; Margaret R. MacLean; Andrew H. Baker

Rationale: Despite improved understanding of the underlying genetics, pulmonary arterial hypertension (PAH) remains a severe disease. Extensive remodeling of small pulmonary arteries, including proliferation of pulmonary artery smooth muscle cells (PASMCs), characterizes PAH. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to play a role in vascular remodeling. Objective: We assessed the role of miR-145 in PAH. Methods and Results: We localized miR-145 in mouse lung to smooth muscle. Using quantitative PCR, we demonstrated increased expression of miR-145 in wild-type mice exposed to hypoxia. PAH was evaluated in miR-145 knockout and mice treated with anti-miRs via measurement of systolic right ventricular pressure, right ventricular hypertrophy, and percentage of remodeled pulmonary arteries. miR-145 deficiency and anti-miR–mediated reduction resulted in significant protection from the development of PAH. In contrast, miR-143 anti-miR had no effect. Furthermore, we observed upregulation of miR-145 in lung tissue of patients with idiopathic and heritable PAH compared with unaffected control subjects and demonstrated expression of miR-145 in SMC of remodeled vessels from such patients. Finally, we show elevated levels of miR-145 expression in primary PASMCs cultured from patients with BMPR2 mutations and also in the lungs of BMPR2 -deficient mice. Conclusions: miR-145 is dysregulated in mouse models of PAH. Downregulation of miR-145 protects against the development of PAH. In patient samples of heritable PAH and idiopathic PAH, miR-145 is expressed in remodeled vessels and mutations in BMPR2 lead to upregulation of miR-145 in mice and PAH patients. Manipulation of miR-145 may represent a novel strategy in PAH treatment. # Novelty and Significance {#article-title-37}Rationale: Despite improved understanding of the underlying genetics, pulmonary arterial hypertension (PAH) remains a severe disease. Extensive remodeling of small pulmonary arteries, including proliferation of pulmonary artery smooth muscle cells (PASMCs), characterizes PAH. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to play a role in vascular remodeling. Objective: We assessed the role of miR-145 in PAH. Methods and Results: We localized miR-145 in mouse lung to smooth muscle. Using quantitative PCR, we demonstrated increased expression of miR-145 in wild-type mice exposed to hypoxia. PAH was evaluated in miR-145 knockout and mice treated with anti-miRs via measurement of systolic right ventricular pressure, right ventricular hypertrophy, and percentage of remodeled pulmonary arteries. miR-145 deficiency and anti-miR–mediated reduction resulted in significant protection from the development of PAH. In contrast, miR-143 anti-miR had no effect. Furthermore, we observed upregulation of miR-145 in lung tissue of patients with idiopathic and heritable PAH compared with unaffected control subjects and demonstrated expression of miR-145 in SMC of remodeled vessels from such patients. Finally, we show elevated levels of miR-145 expression in primary PASMCs cultured from patients with BMPR2 mutations and also in the lungs of BMPR2-deficient mice. Conclusions: miR-145 is dysregulated in mouse models of PAH. Downregulation of miR-145 protects against the development of PAH. In patient samples of heritable PAH and idiopathic PAH, miR-145 is expressed in remodeled vessels and mutations in BMPR2 lead to upregulation of miR-145 in mice and PAH patients. Manipulation of miR-145 may represent a novel strategy in PAH treatment.


Circulation Research | 2012

A Role for miR-145 in Pulmonary Arterial Hypertension

Paola Caruso; Yvonne Dempsie; Hannah C. Stevens; Robert A. McDonald; Lu Long; Ruifang Lu; Kevin P. White; Kirsty M. Mair; John McClure; Mark Southwood; Paul D. Upton; Mei Xin; Eva van Rooij; Eric N. Olson; Nicholas W. Morrell; Margaret R. MacLean; Andrew H. Baker

Rationale: Despite improved understanding of the underlying genetics, pulmonary arterial hypertension (PAH) remains a severe disease. Extensive remodeling of small pulmonary arteries, including proliferation of pulmonary artery smooth muscle cells (PASMCs), characterizes PAH. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to play a role in vascular remodeling. Objective: We assessed the role of miR-145 in PAH. Methods and Results: We localized miR-145 in mouse lung to smooth muscle. Using quantitative PCR, we demonstrated increased expression of miR-145 in wild-type mice exposed to hypoxia. PAH was evaluated in miR-145 knockout and mice treated with anti-miRs via measurement of systolic right ventricular pressure, right ventricular hypertrophy, and percentage of remodeled pulmonary arteries. miR-145 deficiency and anti-miR–mediated reduction resulted in significant protection from the development of PAH. In contrast, miR-143 anti-miR had no effect. Furthermore, we observed upregulation of miR-145 in lung tissue of patients with idiopathic and heritable PAH compared with unaffected control subjects and demonstrated expression of miR-145 in SMC of remodeled vessels from such patients. Finally, we show elevated levels of miR-145 expression in primary PASMCs cultured from patients with BMPR2 mutations and also in the lungs of BMPR2 -deficient mice. Conclusions: miR-145 is dysregulated in mouse models of PAH. Downregulation of miR-145 protects against the development of PAH. In patient samples of heritable PAH and idiopathic PAH, miR-145 is expressed in remodeled vessels and mutations in BMPR2 lead to upregulation of miR-145 in mice and PAH patients. Manipulation of miR-145 may represent a novel strategy in PAH treatment. # Novelty and Significance {#article-title-37}Rationale: Despite improved understanding of the underlying genetics, pulmonary arterial hypertension (PAH) remains a severe disease. Extensive remodeling of small pulmonary arteries, including proliferation of pulmonary artery smooth muscle cells (PASMCs), characterizes PAH. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to play a role in vascular remodeling. Objective: We assessed the role of miR-145 in PAH. Methods and Results: We localized miR-145 in mouse lung to smooth muscle. Using quantitative PCR, we demonstrated increased expression of miR-145 in wild-type mice exposed to hypoxia. PAH was evaluated in miR-145 knockout and mice treated with anti-miRs via measurement of systolic right ventricular pressure, right ventricular hypertrophy, and percentage of remodeled pulmonary arteries. miR-145 deficiency and anti-miR–mediated reduction resulted in significant protection from the development of PAH. In contrast, miR-143 anti-miR had no effect. Furthermore, we observed upregulation of miR-145 in lung tissue of patients with idiopathic and heritable PAH compared with unaffected control subjects and demonstrated expression of miR-145 in SMC of remodeled vessels from such patients. Finally, we show elevated levels of miR-145 expression in primary PASMCs cultured from patients with BMPR2 mutations and also in the lungs of BMPR2-deficient mice. Conclusions: miR-145 is dysregulated in mouse models of PAH. Downregulation of miR-145 protects against the development of PAH. In patient samples of heritable PAH and idiopathic PAH, miR-145 is expressed in remodeled vessels and mutations in BMPR2 lead to upregulation of miR-145 in mice and PAH patients. Manipulation of miR-145 may represent a novel strategy in PAH treatment.


Hypertension | 2007

Effect of Tryptophan Hydroxylase 1 Deficiency on the Development of Hypoxia-Induced Pulmonary Hypertension

Ian Morecroft; Yvonne Dempsie; Michael Bader; Diego J. Walther; Katarina Kotnik; Lynn Loughlin; Margaret Nilsen; Margaret R. MacLean

Tryptophan hydroxylase 1 catalyzes the rate-limiting step in the synthesis of serotonin in the periphery. Recently, it has been shown that expression of the tryptophan hydroxylase 1 gene is increased in lungs and pulmonary endothelial cells from patients with idiopathic pulmonary arterial hypertension. Here we investigated the effect of genetic deletion of tryptophan hydroxylase 1 on hypoxia-induced pulmonary arterial hypertension in mice by measuring pulmonary hemodynamics and pulmonary vascular remodeling before and after 2 weeks of hypoxia. In wild-type mice, hypoxia increased right ventricular pressure and pulmonary vascular remodeling. These effects of hypoxia were attenuated in the tryptophan hydroxylase 1−/−mice. Hypoxia increased right ventricular hypertrophy in both wild-type and tryptophan hydroxylase 1−/−mice suggesting that in vivo peripheral serotonin has a differential effect on the pulmonary vasculature and right ventricular hypertrophy. Contractile responses to serotonin were increased in pulmonary arteries from tryptophan hydroxylase 1−/−mice. Hypoxia increased serotonin-mediated contraction in vessels from the wild-type mice, but this was not further increased by hypoxia in the tryptophan hydroxylase 1−/−mice. In conclusion, these results indicate that tryptophan hydroxylase 1 and peripheral serotonin play an essential role in the development of hypoxia-induced elevations in pulmonary pressures and hypoxia-induced pulmonary vascular remodeling. In addition, the results suggest that, in mice, serotonin has differential effects on the pulmonary vasculature and right ventricular hypertrophy.


British Journal of Pharmacology | 2009

Pulmonary hypertension: therapeutic targets within the serotonin system

Yvonne Dempsie; Margaret R. MacLean

Pulmonary arterial hypertension (PAH) is characterized by a sustained and progressive elevation in pulmonary arterial pressure and pulmonary vascular remodelling leading to right heart failure and death. Prognosis is poor and novel therapeutic approaches are needed. The serotonin hypothesis of PAH originated in the 1960s after an outbreak of the disease was reported among patients taking the anorexigenic drugs aminorex and fenfluramine. These are indirect serotinergic agonists and serotonin transporter substrates. Since then many advances have been made in our understanding of the role of serotonin in the pathobiology of PAH. The rate‐limiting enzyme in the synthesis of serotonin is tryprophan hydroxylase (Tph). Serotonin is synthesized, through Tph1, in the endothelial cells of the pulmonary artery and can then act on underlying pulmonary arterial smooth muscle cells and pulmonary arterial fibroblasts in a paracrine fashion causing constriction and remodelling. These effects of serotonin can be mediated through both the serotonin transporter and serotonin receptors. This review will discuss our current understanding of ‘the serotonin hypothesis’ of PAH and highlight possible therapeutic targets within the serotonin system.


Circulation | 2008

Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice.

Yvonne Dempsie; Ian Morecroft; David Welsh; Neil MacRitchie; Nigel Herold; Lynn Loughlin; Margaret Nilsen; Andrew Peacock; Anthony J. Harmar; Michael Bader; Margaret R. MacLean

Background— The incidence of pulmonary arterial hypertension secondary to the use of indirect serotinergic agonists such as aminorex and dexfenfluramine led to the “serotonin hypothesis” of pulmonary arterial hypertension; however, the role of serotonin in dexfenfluramine-induced pulmonary arterial hypertension remains controversial. Here, we used novel transgenic mice lacking peripheral serotonin (deficient in tryptophan hydroxylase-1; Tph1−/− mice) or overexpressing the gene for the human serotonin transporter (SERT; SERT+ mice) to investigate this further. Methods and Results— Dexfenfluramine administration (5 mg · kg−1 · d−1 PO for 28 days) increased systolic right ventricular pressure and pulmonary vascular remodeling in wild-type mice but not in Tph1−/− mice, which suggests that dexfenfluramine-induced pulmonary arterial hypertension is dependent on serotonin synthesis. Dexfenfluramine was also administered to normoxic SERT+ mice and SERT+ mice exposed to chronic hypoxia. Dexfenfluramine and SERT overexpression had additive effects in increasing pulmonary vascular remodeling; however, in hypoxic SERT+ mice, dexfenfluramine reduced both systolic right ventricular pressure and pulmonary vascular remodeling. Pulmonary arterial fibroblasts from SERT+ mice, but not wild-type mice, proliferated in response to hypoxia. Dexfenfluramine inhibited hypoxia-induced proliferation of pulmonary arterial fibroblasts derived from SERT+ mice in a manner dependent on SERT activity. Dexfenfluramine also inhibited the hypoxia-mediated increase in phosphorylation of p38 mitogen-activated protein kinase in SERT+ pulmonary arterial fibroblasts. Conclusions— The results suggest that peripheral serotonin is critical for the development of dexfenfluramine-induced pulmonary arterial hypertension and that dexfenfluramine and SERT overexpression have additive effects on pulmonary vascular remodeling. We propose that dexfenfluramine can also inhibit hypoxia-induced pulmonary vascular remodeling via SERT activity and inhibition of hypoxia-induced p38 mitogen-activated protein kinase.


Cardiovascular Research | 2011

The serotonin transporter, gender, and 17β oestradiol in the development of pulmonary arterial hypertension.

Kevin P. White; Yvonne Dempsie; Margaret Nilsen; Audrey F. Wright; Lynn Loughlin; Margaret R. MacLean

AIMS Idiopathic and familial forms of pulmonary arterial hypertension (PAH) predominantly affect females through an unknown mechanism. Activity of the serotonin transporter (SERT) may modulate the development of PAH, and mice overexpressing SERT (SERT+ mice) develop PAH and severe hypoxia-induced PAH. In the central nervous system, oestrogens influence activity of the serotonin system. Therefore, we examined the influence of gender on the development of PAH in SERT+ mice and how this is modulated by female hormones. METHODS AND RESULTS PAH was assessed via measurement of right ventricular systolic pressure (RVSP), pulmonary vascular remodelling (PVR), and right ventricular hypertrophy. Male SERT+ mice did not develop PAH. Female SERT+ mice demonstrated increased RVSP and PVR and this was abolished by ovariectomy. Following exposure to hypoxia, SERT+ mice exhibited severe PAH and this was also attenuated by ovariectomy. Chronic administration of 17β oestradiol re-established the PAH phenotype in ovariectomized, normoxic, and hypoxic SERT+ mice. 17β oestradiol also up-regulated tryptophan hydroxylase-1 (TPH1), 5-hydroytryptamine(1B) (5-HT(1B)) receptor, and SERT expression in human pulmonary arterial smooth muscle cells (hPASMCs). 17β oestradiol stimulated hPASMC proliferation and this was inhibited by both the TPH inhibitor para-chlorophenylalanine and the 5-HT(1B) receptor antagonist SB224289. CONCLUSION 17β oestradiol is critical to the development of PAH and severe hypoxia-induced PAH in female SERT+ mice. In hPASMCs, 17β oestradiol-induced proliferation is dependant on de novo serotonin synthesis and stimulation of the 5-HT(1B) receptor. These interactions between the serotonin system and 17β oestradiol may contribute to the increased risk of PAH associated with female gender.


Current Opinion in Pharmacology | 2009

Serotonin and pulmonary hypertension--from bench to bedside?

Margaret R. MacLean; Yvonne Dempsie

The serotonin hypothesis of pulmonary arterial hypertension (PAH) arose owing to anorexigens, acting as indirect serotinergic agonists, causing PAH. However, it is now thought that serotonin plays an important role in the pathobiology of PAH per se. The rate-limiting enzyme in the synthesis of peripheral serotonin is tryptophan hydroxylase 1 (TPH1), serotonin can mediate pulmonary arterial smooth muscle cell proliferation via the serotonin transporter (SERT) and serotonin can induce pulmonary vasoconstriction via the 5-HT1B receptor in man. There is evidence that TPH1, SERT and 5-HT1B expression/activity can be upregulated in clinical PAH. This review discusses recent evidence implicating serotonin in the development of experimental and clinical PAH and suggests potential therapeutic targets.


Respiratory Research | 2011

Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females

Yvonne Dempsie; Margaret Nilsen; Kevin P. White; Kirsty M. Mair; Lynn Loughlin; Noona Ambartsumian; Marlene Rabinovitch; Margaret R. MacLean

BackgroundIdiopathic and familial forms of pulmonary arterial hypertension (PAH) occur more frequently in women than men. However, the reason for this remains unknown. Both the calcium binding protein S100A4/Mts1 (Mts1) and its endogenous receptor (receptor for advanced glycosylation end products; RAGE) have been implicated in the development of PAH. We wished to investigate if the Mts1/RAGE pathway may play a role in the gender bias associated with PAH.MethodsWe investigated the effects of gender on development of PAH in mice over-expressing Mts1 (Mts1+ mice) via measurement of pulmonary arterial remodeling, systolic right ventricular pressure (sRVP) and right ventricular hypertrophy (RVH). Gender differences in pulmonary arterial Mts1 and RAGE expression were assessed by qRT-PCR and immunohistochemistry. Western blotting and cell counts were used to investigate interactions between 17β-estradiol, Mts1 and RAGE on proliferation of human pulmonary artery smooth muscle cells (hPASMCs). Statistical analysis was by one-way analysis of variance with Dunnetts post test or two-way analysis of variance with Bonferronis post test, as appropriate.ResultsFemale Mts1+ mice developed increased sRVP and pulmonary vascular remodeling, whereas male Mts1+ mice remained unaffected. The development of plexiform-like lesions in Mts1+ mice was specific to females. These lesions stained positive for both Mts1 and RAGE in the endothelial and adventitial layers. Expression of pulmonary arterial Mts1 was greater in female than male Mts1+ mice, and was localised to the medial and adventitial layers in non plexiform-like pulmonary arteries. RAGE gene expression and immunoreactivity were similar between male and female Mts1+ mice and RAGE staining was localised to the endothelial layer in non plexiform-like pulmonary arteries adjacent to airways. In non-plexiform like pulmonary arteries not associated with airways RAGE staining was present in the medial and adventitial layers. Physiological concentrations of 17β-estradiol increased Mts1 expression in hPASMCs. 17β-estradiol-induced hPASMC proliferation was inhibited by soluble RAGE, which antagonises the membrane bound form of RAGE.ConclusionsMts1 over-expression combined with female gender is permissive to the development of experimental PAH in mice. Up-regulation of Mts1 and subsequent activation of RAGE may contribute to 17β-estradiol-induced proliferation of hPASMCs.

Collaboration


Dive into the Yvonne Dempsie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Caruso

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge