Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne Kew is active.

Publication


Featured researches published by Yvonne Kew.


JAMA | 2015

Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial

Roger Stupp; Sophie Taillibert; Andrew A. Kanner; Santosh Kesari; David M. Steinberg; Steven A. Toms; Lynne P. Taylor; Frank S. Lieberman; A. Silvani; Karen Fink; Gene H. Barnett; Jay Jiguang Zhu; John W. Henson; Herbert H. Engelhard; Thomas C. Chen; David D. Tran; Jan Sroubek; Nam D. Tran; Andreas F. Hottinger; Joseph Landolfi; Rajiv Desai; Manuela Caroli; Yvonne Kew; Jérôme Honnorat; Ahmed Idbaih; Eilon D. Kirson; Uri Weinberg; Yoram Palti; Monika E. Hegi; Zvi Ram

IMPORTANCE Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. OBJECTIVE To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis. INTERVENTIONS Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle. MAIN OUTCOMES AND MEASURES The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up. RESULTS The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004). CONCLUSIONS AND RELEVANCE In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00916409.


Molecular Therapy | 2013

T Cells Redirected to EphA2 for the Immunotherapy of Glioblastoma

Kevin Chow; Swati Naik; Sunitha Kakarla; Vita S. Brawley; Donald R. Shaffer; Zhongzhen Yi; Nino Rainusso; Meng Fen Wu; Hao Liu; Yvonne Kew; Robert G. Grossman; Suzanne Z. Powell; Dean Lee; Nabil Ahmed; Stephen Gottschalk

Outcomes for patients with glioblastoma (GBM) remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)-13Rα2, epidermal growth factor receptor variant III (EGFRvIII), or human epidermal growth factor receptor 2 (HER2) has shown promise for the treatment of gliomas in preclinical models and in a clinical study (IL-13Rα2). However, targeting IL-13Rα2 and EGFRvIII is associated with the development of antigen loss variants, and there are safety concerns with targeting HER2. Erythropoietin-producing hepatocellular carcinoma A2 (EphA2) has emerged as an attractive target for the immunotherapy of GBM as it is overexpressed in glioma and promotes its malignant phenotype. To generate EphA2-specific T cells, we constructed an EphA2-specific CAR with a CD28-ζ endodomain. EphA2-specific T cells recognized EphA2-positive glioma cells as judged by interferon-γ (IFN-γ) and IL-2 production and tumor cell killing. In addition, EphA2-specific T cells had potent activity against human glioma-initiating cells preventing neurosphere formation and destroying intact neurospheres in coculture assays. Adoptive transfer of EphA2-specific T cells resulted in the regression of glioma xenografts in severe combined immunodeficiency (SCID) mice and a significant survival advantage in comparison to untreated mice and mice treated with nontransduced T cells. Thus, EphA2-specific T-cell immunotherapy may be a promising approach for the treatment of EphA2-positive GBM.


Molecular Therapy | 2013

Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma.

Meenakshi Hegde; Amanda Corder; Kevin Chow; Malini Mukherjee; Aidin Ashoori; Yvonne Kew; Yi Jonathan Zhang; David S. Baskin; Fatima A. Merchant; Vita S. Brawley; Tiara Byrd; Simone Krebs; Meng Fen Wu; Hao Liu; Helen E. Heslop; Stephen Gottachalk; Eric Yvon; Nabil Ahmed

Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.


JAMA Oncology | 2017

HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial

Nabil Ahmed; Vita S. Brawley; Meenakshi Hegde; Kevin Bielamowicz; Mamta Kalra; Daniel Landi; Catherine Robertson; Tara L. Gray; Oumar Diouf; Amanda Wakefield; Alexia Ghazi; Claudia Gerken; Zhongzhen Yi; Aidin Ashoori; Meng Fen Wu; Hao Liu; Cliona M. Rooney; Gianpietro Dotti; Adrian P. Gee; Jack Su; Yvonne Kew; David S. Baskin; Yi Jonathan Zhang; Pamela New; Bambi Grilley; Milica Stojakovic; John Hicks; Suzanne Z. Powell; Malcolm K. Brenner; Helen E. Heslop

Importance Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. Objective To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)–modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. Design, Setting, and Participants In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children’s Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). Interventions Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.&zgr;-signaling endodomain (HER2-CAR VSTs). Main Outcomes and Measures Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. Results A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients <18 years [median age, 14 years; range, 10-17 years]) with progressive HER2-positive glioblastoma received 1 or more infusions of autologous HER2-CAR VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. Conclusions and Relevance Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma. Further evaluation of HER2-CAR VSTs in a phase 2b study is warranted as a single agent or in combination with other immunomodulatory approaches for glioblastoma.


Journal of Immunotherapy | 2012

Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma.

Alexia Ghazi; Aidin Ashoori; Patrick J. Hanley; Vita S. Brawley; Donald R. Shaffer; Yvonne Kew; Suzanne Z. Powell; Robert G. Grossman; Zakaria Grada; Michael E. Scheurer; Meenakshi Hegde; Ann M. Leen; Catherine M. Bollard; Cliona M. Rooney; Helen E. Heslop; Stephen Gottschalk; Nabil Ahmed

Glioblastoma (GBM) is the most common primary brain cancer in adults and is virtually incurable. Recent studies have shown that cytomegalovirus (CMV) is present in majority of GBMs. To evaluate whether the CMV antigens pp65 and IE1, which are expressed in GBMs, could be targeted by CMV-specific T cells, we measured the frequency of T cells targeting pp65 and IE1 in the peripheral blood of a cohort of 11 sequentially diagnosed CMV-seropositive GBM patients, and evaluated whether it was feasible to expand autologous CMV-specific T cells for future clinical studies. All 11 CMV-seropositive GBM patients had T cells specific for pp65 and IE1 in their peripheral blood assessed by IFN&ggr; enzyme-linked immunospot assay. However, the precursor frequency of pp65-specific T cells was decreased in comparison with healthy donors (P=0.001). We successfully reactivated and expanded CMV-specific T cells from 6 out of 6 GBM patients using antigen-presenting cells transduced with an adenoviral vector encoding pp65 and IE1. CMV-specific T-cell lines contained CD4+ as well as CD8+ T cells, recognized pp65+ and IE1+ targets and killed CMV-infected autologous GBM cells. Infusion of such CMV-specific T-cell lines may extend the benefits of T-cell therapy to patients with CMV+ GBMs.


Seminars in Oncology | 2014

Clinical Practice Experience With NovoTTF-100A™ System for Glioblastoma: The Patient Registry Dataset (PRiDe)

Maciej M. Mrugala; Herbert H. Engelhard; David D. Tran; Yvonne Kew; Robert Cavaliere; John L. Villano; Daniela A. Bota; Jeremy Rudnick; Ashley Love Sumrall; Jay Jiguang Zhu; Nicholas Butowski

Recurrent glioblastoma multiforme (GBM) is a highly aggressive cancer with poor prognosis, and an overall survival of 6 to 7 months with optimal therapies. The NovoTTF-100A™ System is a novel antimitotic cancer therapy recently approved for the treatment of recurrent GBM, based on phase III (EF-11) trial results. The Patient Registry Dataset (PRiDe) is a post-marketing registry of all recurrent GBM patients who received NovoTTF Therapy in a real-world, clinical practice setting in the United States between 2011 and 2013. Data were collected from all adult patients with recurrent GBM who began commercial NovoTTF Therapy in the United States between October 2011 and November 2013. All patients provided written consent before treatment was started. Overall survival (OS) curves were constructed for PRiDe using the Kaplan-Meier method. Median OS in PRiDe was compared for patients stratified by average daily compliance (≥75% v<75% per day) and other prognostic variables. Adverse events were also evaluated. Data from 457 recurrent GBM patients who received NovoTTF Therapy in 91 US cancer centers were analyzed. More patients in PRiDe than the EF-11 trial received NovoTTF Therapy for first recurrence (33% v 9%) and had received prior bevacizumab therapy (55.1% v 19%). Median OS was significantly longer with NovoTTF Therapy in clinical practice (PRiDe data set) than in the EF-11 trial (9.6 v 6.6 months; HR, 0.66; 95% CI, 0.05 to 0.86, P = .0003). One- and 2-year OS rates were more than double for NovoTTF Therapy patients in PRiDe than in the EF-11 trial (1-year: 44% v 20%; 2-year: 30% v 9%). First and second versus third and subsequent recurrences, high Karnofsky performance status (KPS), and no prior bevacizumab use were favorable prognostic factors. No unexpected adverse events were detected in PRiDe. As in the EF-11 trial, the most frequent adverse events were mild to moderate skin reactions associated with application of the NovoTTF Therapy transducer arrays. Results from PRiDe, together with those previously reported in the EF-11 trial, indicate that NovoTTF Therapy offers clinical benefit to patients with recurrent GBM. NovoTTF Therapy has high patient tolerability and favorable safety profile in the real-world, clinical practice setting.


Journal of Neuro-oncology | 2014

Overexpression and constitutive nuclear localization of cohesin protease Separase protein correlates with high incidence of relapse and reduced overall survival in glioblastoma multiforme

Malini Mukherjee; Tiara Byrd; Vita S. Brawley; Kevin Bielamowicz; Xiao-Nan Li; Fatima A. Merchant; Saurabh Maitra; Pavel Sumazin; Greg Fuller; Yvonne Kew; David Sun; Suzanne Z. Powell; Nabil Ahmed; Nenggang Zhang; Debananda Pati

Separase, an enzyme that cleaves the chromosomal cohesin during mitosis, is overexpressed in a wide range of human epithelial cancers of breast, bone and prostate (Meyer et al., Clin Cancer Res 15(8):2703–2710, 2009). Overexpression of Separase in animal models results in aneuploidy and tumorigenesis. We have examined the expression and localization of Separase protein in adult and pediatric glioblastoma and normal brain specimens. Immunofluorescence microscopy and Western blot analysis showed significant overexpression of Separase in all adult and a subset of pediatric glioblastoma cells. Tumor status and patient survival strongly correlate with the mislocalization of Separase into the nucleus throughout all stages of the cell cycle. Unlike exclusively nuclear localization in mitotic control cells, glioblastoma samples have a significantly higher number of resting (interphase) cells with strong nuclear Separase staining. Additionally, patient survival analysis demonstrated a strong correlation between overexpression of Separase protein in adult glioblastoma and a high incidence of relapse and reduced overall survival. These results further strengthen our hypothesis that Separase is an oncogene whose overexpression induces tumorigenesis, and indicate that Separase overexpression and aberrant nuclear localization are common in many tumor types and may predict outcome in some human malignancies.


Neurosurgical Focus | 2016

Laser interstitial thermal therapy for newly diagnosed and recurrent glioblastoma

Jonathan G. Thomas; Ganesh Rao; Yvonne Kew; Sujit S. Prabhu

OBJECTIVE Glioblastoma (GBM) is the most common and deadly malignant primary brain tumor. Better surgical therapies are needed for newly diagnosed GBMs that are difficult to resect and for GBMs that recur despite standard therapies. The authors reviewed their institutional experience of using laser interstitial thermal therapy (LITT) for the treatment of newly diagnosed or recurrent GBMs. METHODS This study reports on the pre-LITT characteristics and post-LITT outcomes of 8 patients with newly diagnosed GBMs and 13 patients with recurrent GBM who underwent LITT. RESULTS Compared with the group with recurrent GBMs, the patients with newly diagnosed GBMs who underwent LITT tended to be older (60.8 vs 48.9 years), harbored larger tumors (22.4 vs 14.6 cm3), and a greater proportion had IDH wild-type GBMs. In the newly diagnosed GBM group, the median progression-free survival and the median survival after the procedure were 2 months and 8 months, respectively, and no patient demonstrated radiographic shrinkage of the tumor on follow-up imaging. In the 13 patients with recurrent GBM, 5 demonstrated a response to LITT, with radiographic shrinkage of the tumor following ablation. The median progression-free survival was 5 months, and the median survival was greater than 7 months. CONCLUSIONS In carefully selected patients with recurrent GBM, LITT may be an effective alternative to surgery as a salvage treatment. Its role in the treatment of newly diagnosed unresectable GBMs is not established yet and requires further study.


JAMA Oncology | 2018

Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma: A Secondary Analysis of a Randomized Clinical Trial

Martin J. B. Taphoorn; Linda Dirven; Andrew A. Kanner; Gitit Lavy-Shahaf; Uri Weinberg; Sophie Taillibert; Steven A. Toms; Jérôme Honnorat; Thomas C. Chen; Jan Sroubek; Carlos A. David; Ahmed Idbaih; Jacob Easaw; Chae-Yong Kim; Jordi Bruna; Andreas F. Hottinger; Yvonne Kew; Patrick Roth; Rajiv Desai; John L. Villano; Eilon D. Kirson; Zvi Ram; Roger Stupp

Importance Tumor-treating fields (TTFields) therapy improves both progression-free and overall survival in patients with glioblastoma. There is a need to assess the influence of TTFields on patients’ health-related quality of life (HRQoL). Objective To examine the association of TTFields therapy with progression-free survival and HRQoL among patients with glioblastoma. Design, Setting, and Participants This secondary analysis of EF-14, a phase 3 randomized clinical trial, compares TTFields and temozolomide or temozolomide alone in 695 patients with glioblastoma after completion of radiochemotherapy. Patients with glioblastoma were randomized 2:1 to combined treatment with TTFields and temozolomide or temozolomide alone. The study was conducted from July 2009 until November 2014, and patients were followed up through December 2016. Interventions Temozolomide, 150 to 200 mg/m2/d, was given for 5 days during each 28-day cycle. TTFields were delivered continuously via 4 transducer arrays placed on the shaved scalp of patients and were connected to a portable medical device. Main Outcomes and Measures Primary study end point was progression-free survival; HRQoL was a predefined secondary end point, measured with questionnaires at baseline and every 3 months thereafter. Mean changes from baseline scores were evaluated, as well as scores over time. Deterioration-free survival and time to deterioration were assessed for each of 9 preselected scales and items. Results Of the 695 patients in the study, 639 (91.9%) completed the baseline HRQoL questionnaire. Of these patients, 437 (68.4%) were men; mean (SD) age, 54.8 (11.5) years. Health-related quality of life did not differ significantly between treatment arms except for itchy skin. Deterioration-free survival was significantly longer with TTFields for global health (4.8 vs 3.3 months; P < .01); physical (5.1 vs 3.7 months; P < .01) and emotional functioning (5.3 vs 3.9 months; P < .01); pain (5.6 vs 3.6 months; P < .01); and leg weakness (5.6 vs 3.9 months; P < .01), likely related to improved progression-free survival. Time to deterioration, reflecting the influence of treatment, did not differ significantly except for itchy skin (TTFields worse; 8.2 vs 14.4 months; P < .001) and pain (TTFields improved; 13.4 vs 12.1 months; P < .01). Role, social, and physical functioning were not affected by TTFields. Conclusions and Relevance The addition of TTFields to standard treatment with temozolomide for patients with glioblastoma results in improved survival without a negative influence on HRQoL except for more itchy skin, an expected consequence from the transducer arrays. Trial Registration clinicaltrials.gov Identifier: NCT00916409


Annals of Oncology | 2014

415OALTERNATING ELECTRIC FIELDS THERAPY FOR RECURRENT GLIOBLASTOMA - NOVOTTF-100A SYSTEM: UPDATED OUTCOMES AND TOXICITY BASED ON THE ANALYSIS OF PATIENT REGISTRY DATA

Maciej M. Mrugala; Herbert H. Engelhard; Nicholas Butowski; David D. Tran; Yvonne Kew; Robert Cavaliere; John L. Villano; Daniela A. Bota; Santosh Kesari; Jeremy Rudnick; Ashley L. Sumrall; Jay Jiguang Zhu; Eric T. Wong

ABSTRACT Aim: To present updated outcomes and toxicity data from patients with recurrent glioblastoma treated with the commercially available NovoTTF-100A System using patient registry database. Methods: The NovoTTF-100A device has been available by prescription at 126 oncology centers in the United States since November 2011. We retrospectively analyzed the outcomes and toxicity data from patients who were prescribed the device from November 2011 to November 2013 as treatment for recurrent glioblastoma. Overall survival (OS) was calculated based on social security death registry data. It was defined as the time from the treatment start until the date of death or last known date patient was alive. We analyzed performance status, compliance records, treatment history and adverse effects for all subjects. Results: There were 148 female and 309 male patients (n = 457) who were treated with NovoTTF-100A System. The median age was 55 years (range 18 to 86). Median Karnofsky Performance Status (KPS) was 80 (range 10-100) and 33% of patients were at their first recurrence when therapy was initiated. Over half of the patients (n = 252) received bevacizumab prior to NovoTTF- 100A therapy. The median OS was 9.6 (95% [CI] 8.0 to 13.7) months and the median treatment duration was 4.1 (95% [CI] 3.5 to 4.8) months. The average patient compliance with the use of the device was 70%. OS was positively correlated with higher compliance (= > 75%) and KPS (70-100), and negatively correlated with recurrence number and prior use of bevacizumab. Debulking surgery prior to the introduction of NovoTTF-100A therapy did not influence OS. The most common device-related adverse events included skin reactions (24.3%), neurological disorders (10.4%), heat sensation (8.9%), electric sensation (7.7%) and headache (5.7%). Conclusions: Treatment with NovoTTF-100A System, as prescribed in the neuro-oncology clinical practice to patients with recurrent glioblastoma offers favorable outcomes when compared to historical data. Patient compliance with the prescribed use of the system is high and positively correlates with improved survival. Bevacizumab naive patients benefit more while patients with poor KPS and multiple prior recurrences benefit less from this treatment. NovoTTF-100A System is well tolerated and has no new unexpected toxicities since its introduction to clinical practice. Disclosure: M.M. Mrugala: On Advisory Board of Novocure. PI on the clinical trial sponsored by Novocure; H.H. Engelhard: I have participated in Novocures Advisory Boards; N. Butowski: I participated in Novocures Advisory Board; D.D. Tran: I have received honorarium from Novocure for advisory board and speaker bureau; Y. Kew: I have participated in Novocures Advisory Boards; R. Cavaliere: I have been a consultant for Novocure; J. Villano: Member of a speakers bureau and served on an advisory board for Novocure. D. Bota: Novocure Advisory Board; S. Kesari: I have received funding for advisory board meetings and clinical trials sponsored by Novocure; J. Rudnick: I have been a consultant for Novocure; A. Sumrall: I have been a Faculty Speaker and participated in an Advisory Board for Novocure; J.J. Zhu: Novocure Advisory Board; E.T. Wong: I received research funding from Novocure.

Collaboration


Dive into the Yvonne Kew's collaboration.

Top Co-Authors

Avatar

Nabil Ahmed

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Suzanne Z. Powell

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Vita S. Brawley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David D. Tran

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Helen E. Heslop

Center for Cell and Gene Therapy

View shared research outputs
Top Co-Authors

Avatar

Herbert H. Engelhard

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Gottschalk

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Aidin Ashoori

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hao Liu

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge