Yvonne Rechkemmer
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yvonne Rechkemmer.
Nature Communications | 2016
Yvonne Rechkemmer; Frauke D. Breitgoff; Margarethe van der Meer; Mihail Atanasov; M. Hakl; M. Orlita; Petr Neugebauer; Frank Neese; Biprajit Sarkar; Joris van Slageren
Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials.
Journal of the American Chemical Society | 2015
Yvonne Rechkemmer; Julia E. Fischer; Raphael Marx; María Dörfel; Petr Neugebauer; Sebastian P. Horvath; Maren Gysler; Theis Brock-Nannestad; Wolfgang Frey; Michael F. Reid; Joris van Slageren
The electronic structure of a novel lanthanide-based single-ion magnet, {C(NH2)3}5[Er(CO3)4]·11H2O, was comprehensively studied by means of a large number of different spectroscopic techniques, including far-infrared, optical, and magnetic resonance spectroscopies. A thorough analysis, based on crystal field theory, allowed an unambiguous determination of all relevant free ion and crystal field parameters. We show that inclusion of methods sensitive to the nature of the lowest-energy states is essential to arrive at a correct description of the states that are most relevant for the static and dynamic magnetic properties. The spectroscopic investigations also allowed for a full understanding of the magnetic relaxation processes occurring in this system. Thus, the importance of spectroscopic studies for the improvement of single-molecule magnets is underlined.
Chemistry: A European Journal | 2014
David Schweinfurth; Yvonne Rechkemmer; Stephan Hohloch; Naina Deibel; Irina Peremykin; Jan Fiedler; Raphael Marx; Petr Neugebauer; Joris van Slageren; Biprajit Sarkar
The complexes [{(tmpa)Co(II) }2 (μ-L(1) )(2-) ](2+) (1(2+) ) and [{(tmpa)Co(II) }2 (μ-L(2) )(2-) ](2+) (2(2+) ), with tmpa=tris(2-pyridylmethyl)amine, H2 L(1) =2,5-di-[2-(methoxy)-anilino]-1,4-benzoquinone, and H2 L(2) =2,5-di-[2-(trifluoromethyl)-anilino]-1,4-benzoquinone, were synthesized and characterized. Structural analysis of 2(2+) revealed a distorted octahedral coordination around the cobalt centers, and cobalt-ligand bond lengths that match with high-spin Co(II) centers. Superconducting quantum interference device (SQUID) magnetometric studies on 1(2+) and 2(2+) are consistent with the presence of two weakly exchange-coupled high-spin cobalt(II) ions, for which the nature of the coupling appears to depend on the substituents on the bridging ligand, being antiferromagnetic for 1(2+) and ferromagnetic for 2(2+) . Both complexes exhibit several one-electron redox steps, and these were investigated with cyclic voltammetry and UV/Vis/near-IR spectroelectrochemistry. For 1(2+) , it was possible to chemically isolate the pure forms of both the one-electron oxidized mixed-valent 1(3+) and the two-electron oxidized isovalent 1(4+) forms, and characterize them structurally as well as magnetically. This series thus provided an opportunity to investigate the effect of reversible electron transfers on the total spin-state of the molecule. In contrast to 2(2+) , for 1(4+) the metal-ligand distances and the distances within the quinonoid ligand point to the existence of two low-spin Co(III) centers, thus showing the innocence of the quintessential non-innocent ligands L. Magnetic data corroborate these observations by showing the decrease of the magnetic moment by roughly half (neglecting spin exchange effects) on oxidizing the molecules with one electron, and the disappearance of a paramagnetic response upon two-electron oxidation, which confirms the change in spin state associated with the electron-transfer steps.
Chemistry: A European Journal | 2016
Margarethe van der Meer; Yvonne Rechkemmer; Uta Frank; Frauke D. Breitgoff; Stephan Hohloch; Cheng-Yong Su; Petr Neugebauer; Raphael Marx; María Dörfel; Joris van Slageren; Biprajit Sarkar
Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis.
Dalton Transactions | 2016
Michael G. Sommer; Yvonne Rechkemmer; Lisa Suntrup; Stephan Hohloch; Margarethe van der Meer; Joris van Slageren; Biprajit Sarkar
The azido ligand is widely used in coordination chemistry both as a ligand and as a metal-bound reactant. Its role as a bridge for magnetic exchange coupling has attracted a lot of attention in polynuclear metal complexes. However, only a very limited number of complexes are known in which a single azide anion, particularly in the μ1,1-mode, is the only unsupported connection between two metal centers. We present here a series of copper(ii)-azido complexes with amine anchored, triazole-based tripodal ligands containing varying substituents. In the mononuclear copper-azido complexes there is only a negligible effect of these substituents on the structure of the metal complexes. However, the substituents seem to play a decisive role in the type and formation of the dinuclear complexes. Using the tripodal ligand TBTA with flexible benzyl substituents resulted in a rare example of an unsupported and solely μ1,1-azido-bridged dinuclear complex. The use of the TDTA ligand with 2,6-diisopropylphenyl moieties as rigid and sterically demanding substituents resulted in the formation of a scarce example of a solely μ1,4-tetrazolato-bridged dinuclear complex by in situ cycloaddition between the azide and solvent nitrile. This observation of a reaction of unactivated aliphatic nitrile with the azide anion at room temperature is very unusual. The isolation and characterization (by means of X-ray diffraction) of intermediates allows for mechanistic insights into the cycloaddition reaction. The isolated bridges in both dinuclear complexes render them ideal model compounds for the investigation of the magnetic exchange mediated by these ligands usually employed in polynuclear complexes and frameworks together with additional bridging ligands. Magnetic measurements and broken-symmetry DFT calculations were used to shed light on the magnetic exchange revealing weak and moderate antiferromagnetic exchange for the azide and tetrazolate, respectively.
Inorganic Chemistry | 2017
Michael G. Sommer; Raphael Marx; David Schweinfurth; Yvonne Rechkemmer; Petr Neugebauer; Margarethe van der Meer; Stephan Hohloch; Serhiy Demeshko; Franc Meyer; Joris van Slageren; Biprajit Sarkar
The azide anion is widely used as a ligand in coordination chemistry. Despite its ubiquitous presence, controlled synthesis of azido complexes remains a challenging task. Making use of click-derived tripodal ligands, we present here various coordination motifs of the azido ligands, the formation of which appears to be controlled by the peripheral substituents on the tripodal ligands with otherwise identical structure of the coordination moieties. Thus, the flexible benzyl substituents on the tripodal ligand TBTA led to the formation of the first example of an unsupported and solely μ1,1-azido-bridged dicobalt(II) complex. The more rigid phenyl substituents on the TPTA ligand deliver an unsupported and solely μ1,3-azido-bridged dicobalt(II) complex. Bulky diisopropylphenyl substituents on the TDTA ligand deliver a doubly μ1,1-azido-bridged dicobalt(II) complex. Intriguingly, the mononuclear copper(II) complex [Cu(TBTA)N3]+ is an excellent synthon for generating mixed dinuclear complexes of the form [(TBTA)Co(μ1,1-N3)Cu(TBTA)]3+ or [(TBTA)Cu(μ1,1-N3)Cu(TPTA)]3+, both of which contain a single unsupported μ1,1-N3 as a bridge. To the best of our knowledge, these are also the first examples of mixed dinuclear complexes with a μ1,1-N3 monoazido bridge. All complexes were crystallographically characterized, and selected examples were probed via magnetometry and high-field EPR spectroscopy to elucidate the electronic structures of these complexes and the nature of magnetic coupling in the various azido-bridged complexes. These results thus prove the power of click-tripodal ligands in generating hitherto unknown chemical structures and properties.
Journal of Materials Chemistry C | 2018
Francesca Ciccullo; Mathias Glaser; Marie S. Sättele; Samuel Lenz; Petr Neugebauer; Yvonne Rechkemmer; Joris van Slageren; M. Benedetta Casu
We have investigated the thin films of a copper(II) β-diketonate complex by using a multi-technique approach including X-ray photoelectron spectroscopy, high-frequency electron paramagnetic resonance, and magnetic circular dichroism spectroscopy. This complex, Cu(dbm)2 (Hdbm is dibenzoyl methane), is a potential molecular quantum bit. We have demonstrated that Cu(dbm)2 can be successfully evaporated under controlled conditions. We have further studied the stability of the obtained films in air down to the monolayer regime. The results show that Cu(dbm)2 thin films have very good stability, also in comparison to other potential molecular quantum bits. Understanding the stability of this class of materials plays an important role when moving from academic investigations to environments that mimic those of working devices. In this respect, thermally and air stable thin films are a key step towards applications.
Archive | 2017
Michael G. Sommer; Raphael Marx; David Schweinfurth; Yvonne Rechkemmer; Petr Neugebauer; Margarethe van der Meer; Stephan Hohloch; Serhiy Demeshko; Franc Meyer; Joris van Slageren; Biprajit Sarkar
Related Article: Michael G. Sommer, Raphael Marx, David Schweinfurth, Yvonne Rechkemmer, Petr Neugebauer, Margarethe van der Meer, Stephan Hohloch, Serhiy Demeshko, Franc Meyer, Joris van Slageren, and Biprajit Sarkar|2017|Inorg.Chem.|56|402|doi:10.1021/acs.inorgchem.6b02330
Chemical Science | 2016
Maren Gysler; Fadi El Hallak; Liviu Ungur; Raphael Marx; M. Hakl; Petr Neugebauer; Yvonne Rechkemmer; Yanhua Lan; I. Sheikin; M. Orlita; Christopher E. Anson; Annie K. Powell; Roberta Sessoli; Liviu F. Chibotaru; Joris van Slageren
Chemical Communications | 2014
Margarethe van der Meer; Yvonne Rechkemmer; Irina Peremykin; Stephan Hohloch; Joris van Slageren; Biprajit Sarkar