Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne Sawall is active.

Publication


Featured researches published by Yvonne Sawall.


PLOS ONE | 2012

Effects of Eutrophication, Seasonality and Macrofouling on the Diversity of Bacterial Biofilms in Equatorial Coral Reefs

Yvonne Sawall; Claudio Richter; Alban Ramette

Biofilms play an important role as a settlement cue for invertebrate larvae and significantly contribute to the nutrient turnover in aquatic ecosystems. Nevertheless, little is known about how biofilm community structure generally responds to environmental changes. This study aimed to identify patterns of bacterial dynamics in coral reef biofilms in response to associated macrofouling community structure, microhabitat (exposed vs. sheltered), seasonality, and eutrophication. Settlement tiles were deployed at four reefs along a cross-shelf eutrophication gradient and were exchanged every 4 months over 20 months. The fouling community composition on the tiles was recorded and the bacterial community structure was assessed with the community fingerprinting technique Automated Ribosomal Intergenic Spacer Analysis (ARISA). Bacterial operational taxonomic unit (OTU) number was higher on exposed tiles, where the fouling community was homogenous and algae-dominated, than in sheltered habitats, which were occupied by a variety of filter feeders. Furthermore, OTU number was also highest in eutrophied near-shore reefs, while seasonal variations in community structure were most pronounced in the oligotrophic mid-shelf reef. In contrast, the macrofouling community structure did not change significantly with seasons. Changes in bacterial community patterns were mostly affected by microhabitat, seasonal and anthropogenically derived changes in nutrient availability, and to a lesser extent by changes in the macrofouling community structure. Path analysis revealed a complex interplay of various environmental and biological factors explaining the spatial and temporal variations in bacterial biofilm communities under natural conditions.


Marine and Freshwater Research | 2016

How good are we at assessing the impact of ocean acidification in coastal systems? Limitations, omissions and strengths of commonly used experimental approaches with special emphasis on the neglected role of fluctuations

Martin Wahl; Vincent Saderne; Yvonne Sawall

Much of our past research on ocean acidification has focussed on direct responses to pCO2 increase at the (sub-) organism level, but does not produce findings that can be projected into the natural context. On the basis of a review of ~350 recent articles mainly on ocean acidification effects, we highlight major limitations of commonly used experimental approaches. Thus, the most common type of investigation, simplified and tightly controlled laboratory experiments, has yielded a wealth of findings on short-term physiological responses to acidification, but any extrapolation to the natural ecosystem level is still problematic. For this purpose, an upscaling is required regarding the number of stressors, of ontogenetic stages, of species, of populations, of generations as well as the incorporation of fluctuating intensities of stress. Because the last aspect seems to be the least recognised, we treat in more detail the natural fluctuations of the carbonate system at different temporal and spatial scales. We report on the very rare investigations that have assessed the biological relevance of natural pH or pCO2 fluctuations. We conclude by pleading the case for more natural research approaches that integrate several organisational levels on the response side, several drivers, biological interactions and environmental fluctuations at various scales.


PLOS ONE | 2014

Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

Yvonne Sawall; Abdulmohsin Al-Sofyani; Eulalia Banguera-Hinestroza; Christian R. Voolstra

Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication.


Marine Pollution Bulletin | 2013

Coral recruitment and potential recovery of eutrophied and blast fishing impacted reefs in Spermonde Archipelago, Indonesia

Yvonne Sawall; Jamaluddin Jompa; Magdalena Litaay; Andi Maddusila; Claudio Richter

Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of 2 years. Recruitment on settlement tiles reached up to 705 spat m(-2) yr(-1) and was strongest in the dry season (July-October), except off-shore, where larvae settled earlier. Pocilloporidae dominated near-shore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral settlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed effectively.


Scientific Reports | 2015

Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

Yvonne Sawall; Abdulmoshin Al-Sofyani; Sönke Hohn; Eulalia Banguera-Hinestroza; Christian R. Voolstra; Martin Wahl

Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21–27°C) and southern (16.5°N, 28–33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28–29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.


Frontiers in Marine Science | 2015

Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea

Vanessa S. N. Robitzch; Eulalia Banguera-Hinestroza; Yvonne Sawall; Abdulmohsin Al-Sofyani; Christian R. Voolstra

The Red Sea is the world’s northernmost tropical sea. The 2,000 km long, but narrow basin creates distinct environmental conditions along its latitudinal spread. The Red Sea displays a pronounced salinity gradient from 41 to 37 PSU (north to south) with an opposing temperature gradient from 21-27°C in the north to 27-33.8°C in the south. The Red Sea further displays a decreasing nutrient gradient from south to north that can also influence underwater light fields due to higher phytoplankton content and turbidity. Despite this strong variation in temperature, salinity, nutrients, and light conditions, the Red Sea supports large and diverse coral reef ecosystems along its nearly entire coastline. Only few studies have targeted whether these prevailing gradients affect genetic connectivity of reef organisms in the Red Sea. In this study, we sampled the abundant reef-building coral Pocillopora verrucosa from ten reefs along a latitudinal gradient in the Red Sea covering an area of more than 850 km. We used nine Pocillopora microsatellite markers to assess the underlying population genetic structure and effective population size. To assure the exclusion of cryptic species, all analyzed specimens were chosen from a single mitochondrial lineage. Despite large distances between sampled regions covering pronounced, but smooth temperature and salinity gradients, no significant genetic population structure was found. Rather, our data indicate panmixia and considerable gene flow among regions. The absence of population subdivision driven by environmental factors and over large geographic distances suggests efficient larval dispersal and successful settlement of recruits from a wide range of reef sites. It also advocates, broadcast spawning as the main reproductive strategy of Pocillopora verrucosa in the Red Sea as reflected by the absence of clones in sampled colonies. These factors might explain the success of Pocillopora species throughout the Indo-Pacific and Arabian Seas.


PLOS ONE | 2014

Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea.

Martin Wahl; Abdelmohsin Al-Sofyani; Mahasweta Saha; Inken Kruse; Mark Lenz; Yvonne Sawall

Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.


Sawall, Yvonne and Al-Sofyani, Abdulmohsin (2015) Biology of Red Sea Corals: Metabolism, Reproduction, Acclimatization, and Adaptation The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin. Springer Earth System Sciences . Springer, Berlin, Germany, pp. 487-509. ISBN 978-3-662-45200-4 DOI 10.1007/978-3-662-45201-1_28 <http://dx.doi.org/10.1007/978-3-662-45201-1_28>. | 2015

Biology of Red Sea Corals: Metabolism, Reproduction, Acclimatization, and Adaptation

Yvonne Sawall; Abdulmohsin Al-Sofyani

Coral reefs are the most abundant shallow water ecosystems in the Red Sea, harboring a high species diversity and habitat complexity over large environmental gradients. At the same time the semi-enclosed ocean basin and its partly extreme environmental conditions may promote species evolution being distinct from Indo-Pacific coral reefs. Extreme conditions are found in the southern Red Sea, where temperatures reach up to 33 °C in summer and where nutrient input is high. Mechanisms of organism adjustment to these conditions are of particular interest in the light of climate change research. Towards the north, conditions become more ‘coral-promoting’ finally reaching temperatures between 21–27 °C (winter-summer) and clear waters at the northern end of the Red Sea (Gulf of Aqaba). In this chapter, we summarize the current knowledge about the biology of shallow water, symbiotic, reef-building corals of the Red Sea. We start with an overview on the environmental conditions of the Red Sea, the history of coral reef research in this region and a general introduction into coral biology, before we describe the ecophysiology of Red Sea corals. Coral ecophysiology is presented in the context of varying environmental conditions over depth (e.g., light), between seasons, and over latitudes (e.g., light, temperature, nutrients). Mechanisms and patterns of coral reproduction are discussed in the context of seasonal and latitudinal environmental changes. Finally, we briefly describe anthropogenic influences on Red Sea coral reefs. Acclimatization mechanisms of corals to changing conditions over a depth gradient (mainly light reduction) have been well studied in the Gulf of Aqaba and include the following metabolic adjustments with depth: (i) an upregulation of light-harvesting pigments (chlorophyll a) and a downregulation of photo-protective pigments (xanthophyll), (ii) an increase of heterotrophy, and (iii) a decrease of metabolic activity (e.g., calcification and growth). In addition, a change in the symbiont composition (Symbiodinium clade and/or type) over depth was observed in some coral species. Seasonal environmental changes (mainly light availability, temperature, nutrients) lead to various metabolic responses of the corals, including (i) changes in zooxanthellae pigmentation and density and (ii) changes in the metabolic activity. In particular, changes in calcification and growth rates can be observed with lowest rates during low temperatures in winter. Interestingly, however, this reverses in the southern Red Sea, where calcification rates are higher in winter than in summer. This kind of latitudinal shift is also evident in the timing of reproduction, which occurs earlier in the year (January–March) in the south compared to the north (March–August). This indicates that growth and reproduction are strongly linked to temperature, following a single temperature optimum, which occurs at different times throughout the year from north to south. Furthermore, this hints towards a high phenotypic plasticity (acclimatization) rather than local genetic adaptation of the investigated coral species. A clear shift in the genetic population structure from north to south in another coral species, however, indicates local adaption. Adjusting mechanisms need to be further understood in order to provide indication for predicted climate change effects.


Helgoland Marine Research | 2010

Coral recruitment and recovery after the 2004 Tsunami around the Phi Phi Islands (Krabi Province) and Phuket, Andaman Sea, Thailand

Yvonne Sawall; N. Phongsuwan; Claudio Richter


Aquatic Biology | 2015

Chemical versus structural defense against fish predation in two dominant soft coral species (Xeniidae) in the Red Sea

Ben Xuan Hoang; Yvonne Sawall; Abdulmohsin Al-Sofyani; Martin Wahl

Collaboration


Dive into the Yvonne Sawall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Richter

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Christian R. Voolstra

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eulalia Banguera-Hinestroza

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Saderne

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa S. N. Robitzch

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge