Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne Y C Yeap is active.

Publication


Featured researches published by Yvonne Y C Yeap.


Biochimica et Biophysica Acta | 2010

c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges.

Marie A. Bogoyevitch; Kevin R.W. Ngoei; Teresa T Zhao; Yvonne Y C Yeap; Dominic C. H. Ng

c-Jun N-terminal kinases (JNKs), first characterized as stress-activated members of the mitogen-activated protein kinase (MAPK) family, have become a focus of inhibitor screening strategies following studies that have shown their critical roles in the development of a number of diseases, such as diabetes, neurodegeneration and liver disease. We discuss recent advances in the discovery and development of ATP-competitive and ATP-noncompetitive JNK inhibitors. Because understanding the modes of actions of these inhibitors and improving their properties will rely on a better understanding of JNK structure, JNK catalytic mechanisms and substrates, recent advances in these areas of JNK biochemistry are also considered. In addition, the use of JNK gene knockout animals is continuing to reveal in vivo functions for these kinases, with tissue-specific roles now being dissected with tissue-specific knockouts. These latest advances highlight the many challenges now faced, particularly in the directed targeting of the JNK isoforms in specific tissues.


Journal of Cell Science | 2012

WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression

Marie A. Bogoyevitch; Yvonne Y C Yeap; Zhengdong Qu; Kevin R.W. Ngoei; Yan Yan Yip; Teresa T Zhao; Julian Ik-Tsen Heng; Dominic C. H. Ng

Summary The impact of aberrant centrosomes and/or spindles on asymmetric cell division in embryonic development indicates the tight regulation of bipolar spindle formation and positioning that is required for mitotic progression and cell fate determination. WD40-repeat protein 62 (WDR62) was recently identified as a spindle pole protein linked to the neurodevelopmental defect of microcephaly but its roles in mitosis have not been defined. We report here that the in utero electroporation of neuroprogenitor cells with WDR62 siRNAs induced their cell cycle exit and reduced their proliferative capacity. In cultured cells, we demonstrated cell-cycle-dependent accumulation of WDR62 at the spindle pole during mitotic entry that persisted until metaphase–anaphase transition. Utilizing siRNA depletion, we revealed WDR62 function in stabilizing the mitotic spindle specifically during metaphase. WDR62 loss resulted in spindle orientation defects, decreased the integrity of centrosomes displaced from the spindle pole and delayed mitotic progression. Additionally, we revealed JNK phosphorylation of WDR62 is required for maintaining metaphase spindle organization during mitosis. Our study provides the first functional characterization of WDR62 and has revealed requirements for JNK/WDR62 signaling in mitotic spindle regulation that may be involved in coordinating neurogenesis.


Journal of Biological Chemistry | 2010

c-Jun N-terminal Kinase Phosphorylation of Stathmin Confers Protection against Cellular Stress

Dominic C. H. Ng; Teresa Tian Zhao; Yvonne Y C Yeap; Kevin R.W. Ngoei; Marie A. Bogoyevitch

The cell stress response encompasses the range of intracellular events required for adaptation to stimuli detrimental to cell survival. Although the c-Jun N-terminal kinase (JNK) is a stress-activated kinase that can promote either cell survival or death in response to detrimental stimuli, the JNK-regulated mechanisms involved in survival are not fully characterized. Here we show that in response to hyperosmotic stress, JNK phosphorylates a key cytoplasmic microtubule regulatory protein, stathmin (STMN), on conserved Ser-25 and Ser-38 residues. In in vitro biochemical studies, we identified STMN Ser-38 as the critical residue required for efficient phosphorylation by JNK and identified a novel kinase interaction domain in STMN required for recognition by JNK. We revealed that JNK was required for microtubule stabilization in response to hyperosmotic stress. Importantly, we also demonstrated a novel cytoprotective function for STMN, as the knockdown of STMN levels by siRNA was sufficient to augment viability in response to hyperosmotic stress. Our findings show that JNK targeting of STMN represents a novel stress-activated cytoprotective mechanism involving microtubule network changes.


Biochemical Journal | 2010

c-Jun N-terminal kinase/c-Jun inhibits fibroblast proliferation by negatively regulating the levels of stathmin/oncoprotein 18

Yvonne Y C Yeap; Ivan Ng; Bahareh Badrian; Tuong-Vi Nguyen; Yan Yan Yip; Amardeep S. Dhillon; Steven E. Mutsaers; John Silke; Marie A. Bogoyevitch; Dominic C. H. Ng

The JNKs (c-Jun N-terminal kinases) are stress-activated serine/threonine kinases that can regulate both cell death and cell proliferation. We have developed a cell system to control JNK re-expression at physiological levels in JNK1/2-null MEFs (murine embryonic fibroblasts). JNK re-expression restored basal and stress-activated phosphorylation of the c-Jun transcription factor and attenuated cellular proliferation with increased cells in G1/S-phase of the cell cycle. To explore JNK actions to regulate cell proliferation, we evaluated a role for the cytosolic protein, STMN (stathmin)/Op18 (oncoprotein 18). STMN, up-regulated in a range of cancer types, plays a crucial role in the control of cell division through its regulation of microtubule dynamics of the mitotic spindle. In JNK1/2-null or c-Jun-null MEFs or cells treated with c-Jun siRNA (small interfering RNA), STMN levels were significantly increased. Furthermore, a requirement for JNK/cJun signalling was demonstrated by expression of wild-type c-Jun, but not a phosphorylation-defective c-Jun mutant, being sufficient to down-regulate STMN. Critically, shRNA (small hairpin RNA)-directed STMN down-regulation in JNK1/2-null MEFs attenuated proliferation. Thus JNK/c-Jun regulation of STMN levels provides a novel pathway in regulation of cell proliferation with important implications for understanding the actions of JNK as a physiological regulator of the cell cycle and tumour suppressor protein.


Journal of Biological Chemistry | 2011

Opposing Actions of Extracellular Signal-regulated Kinase (ERK) and Signal Transducer and Activator of Transcription 3 (STAT3) in Regulating Microtubule Stabilization during Cardiac Hypertrophy

Dominic C. H. Ng; Ivan Ng; Yvonne Y C Yeap; Bahareh Badrian; Tatiana Tsoutsman; Julie R. McMullen; Christopher Semsarian; Marie A. Bogoyevitch

Excessive proliferation and stabilization of the microtubule (MT) array in cardiac myocytes can accompany pathological cardiac hypertrophy, but the molecular control of these changes remains poorly characterized. In this study, we examined MT stabilization in two independent murine models of heart failure and revealed increases in the levels of post-translationally modified stable MTs, which were closely associated with STAT3 activation. To explore the molecular signaling events contributing to control of the cardiac MT network, we stimulated cardiac myocytes with an α-adrenergic agonist phenylephrine (PE), and observed increased tubulin content without changes in detyrosinated (glu-tubulin) stable MTs. In contrast, the hypertrophic interleukin-6 (IL6) family cytokines increased both the glu-tubulin content and glu-MT density. When we examined a role for ERK in regulating cardiac MTs, we showed that the MEK/ERK-inhibitor U0126 increased glu-MT density in either control cardiac myocytes or following exposure to hypertrophic agents. Conversely, expression of an activated MEK1 mutant reduced glu-tubulin levels. Thus, ERK signaling antagonizes stabilization of the cardiac MT array. In contrast, inhibiting either JAK2 with AG490, or STAT3 signaling with Stattic or siRNA knockdown, blocked cytokine-stimulated increases in glu-MT density. Furthermore, the expression of a constitutively active STAT3 mutant triggered increased glu-MT density in the absence of hypertrophic stimulation. Thus, STAT3 activation contributes substantially to cytokine-stimulated glu-MT changes. Taken together, our results highlight the opposing actions of STAT3 and ERK pathways in the regulation of MT changes associated with cardiac myocyte hypertrophy.


Journal of Cell Science | 2015

Opposing roles for JNK and Aurora A in regulating the association of WDR62 with spindle microtubules

Nicholas R. Lim; Yvonne Y C Yeap; Teresa T Zhao; Yan Yan Yip; Shu C Wong; Dan Xu; Ching-Seng Ang; Nicholas A. Williamson; Zhiheng Xu; Marie A. Bogoyevitch; Dominic C. H. Ng

ABSTRACT WD40-repeat protein 62 (WDR62) is a spindle pole protein required for normal cell division and neuroprogenitor differentiation during brain development. Microcephaly-associated mutations in WDR62 lead to mitotic mislocalization, highlighting a crucial requirement for precise WDR62 spatiotemporal distribution, although the regulatory mechanisms are unknown. Here, we demonstrate that the WD40-repeat region of WDR62 is required for microtubule association, whereas the disordered C-terminal region regulates cell-cycle-dependent compartmentalization. In agreement with a functional requirement for the WDR62–JNK1 complex during neurogenesis, WDR62 specifically recruits JNK1 (also known as MAPK8), but not JNK2 (also known as MAPK9), to the spindle pole. However, JNK-mediated phosphorylation of WDR62 T1053 negatively regulated microtubule association, and loss of JNK signaling resulted in constitutive WDR62 localization to microtubules irrespective of cell cycle stage. In contrast, we identified that Aurora A kinase (AURKA) and WDR62 were in complex and that AURKA-mediated phosphorylation was required for the spindle localization of WDR62 during mitosis. Our studies highlight complex regulation of WDR62 localization, with opposing roles for JNK and AURKA in determining its spindle association.


Journal of Biological Chemistry | 2014

cAMP-dependent Protein Kinase and c-Jun N-terminal Kinase Mediate Stathmin Phosphorylation for the Maintenance of Interphase Microtubules during Osmotic Stress

Yan Yan Yip; Yvonne Y C Yeap; Marie A. Bogoyevitch; Dominic C. H. Ng

Background: Complex phosphorylation mechanisms negatively regulate stathmin microtubule-destabilizing activity. Results: Stathmin is co-regulated by JNK and PKA to maintain the integrity of interphase microtubules during hyperosmotic stress. Conclusion: Stress-activated JNK and PKA pathways are integrated in the regulation of the microtubule array during cell stress. Significance: Stress signaling regulation of microtubule destabilizing stathmin is critical in determining cytoskeleton organization in response to cell stress. Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress.


Oncogene | 2017

Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration

Christopher Fife; Sharon M. Sagnella; Wee Siang Teo; Sela T. Po'uha; Frances L. Byrne; Yvonne Y C Yeap; Dominic C. H. Ng; Thomas P. Davis; Joshua A. McCarroll; Maria Kavallaris

Neuroblastoma, the most common solid tumor of young children, frequently presents with aggressive metastatic disease and for these children the 5-year survival rates are dismal. Metastasis, the movement of cancer cells from one site to another, involves remodeling of the cytoskeleton including altered microtubule dynamics. The microtubule-destabilizing protein, stathmin, has recently been shown to mediate neuroblastoma metastasis although precise functions remain poorly defined. In this study we investigated stathmin’s contribution to the metastatic process and potential mechanism(s) by which it exerts these effects. Stathmin suppression significantly reduced neuroblastoma cell invasion of 3D tumor spheroids into an extracellular matrix. Moreover, inhibiting stathmin expression significantly reduced transendothelial migration in two different neuroblastoma cell lines in vitro. Inhibition of ROCK, a key regulator of cell migration, in neuroblastoma cells highlighted that stathmin regulates transendothelial migration through ROCK signaling. Reduced stathmin expression in neuroblastoma cells significantly increased the activation of the RhoA small GTPase. Notably, re-expression of either wild type or a phospho-mimetic stathmin mutant (4E) made defective in tubulin binding returned cell migration and transendothelial migration back to control levels, indicating that stathmin may influence these processes in neuroblastoma cells independent of tubulin binding. Finally, stathmin suppression in neuroblastoma cells significantly reduced whole body, lung, kidney and liver metastases in an experimental metastases mouse model. In conclusion, stathmin suppression interferes with the metastatic process via RhoA/ROCK signaling in neuroblastoma cells. These findings highlight the importance of stathmin to the metastatic process and its potential as a therapeutic target for the treatment of neuroblastoma.


Cell Cycle | 2016

Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation

Nicholas R. Lim; Yvonne Y C Yeap; Ching-Seng Ang; Nicholas A. Williamson; Marie A. Bogoyevitch; Leonie M. Quinn; Dominic C. H. Ng

ABSTRACT Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization.


Biochimica et Biophysica Acta | 2014

Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by hyperosmotic stress.

Mariya Misheva; Gurpreet Kaur; Kevin R.W. Ngoei; Yvonne Y C Yeap; Ivan Hong Wee Ng; Kylie M. Wagstaff; Dominic Ch Ng; David A. Jans; Marie A. Bogoyevitch

The c-Jun N-terminal kinases (JNKs) are a group of stress-activated protein kinases that regulate gene expression changes through specific phosphorylation of nuclear transcription factor substrates. To address the mechanisms underlying JNK nuclear entry, we employed a semi-intact cell system to demonstrate for the first time that JNK1 nuclear entry is dependent on the importin α2/β1 heterodimer and independent of importins α3, α4, β2, β3, 7 and 13. However, quantitative image analysis of JNK1 localization following exposure of cells to either arsenite or hyperosmotic stress did not indicate its nuclear accumulation. Extending our analyses to define the dynamics of nuclear trafficking of JNK1, we combined live cell imaging analyses with fluorescence recovery after photobleaching (FRAP) protocols. Subnuclear and subcytoplasmic bleaching protocols revealed the slowed movement of JNK1 in both regions in response to hyperosmotic stress. Strikingly, while movement into the nucleus of green fluorescent protein (GFP) or transport of a GFP-T-antigen fusion protein as estimated by initial rates and time to reach half-maximal recovery (t1/2) measures remained unaltered, hyperosmotic stress slowed the nuclear entry of GFP-JNK1. In contrast, arsenite exposure which did not alter the initial rates of nuclear accumulation of GFP, GFP-T-antigen or GFP-JNK1, decreased the t1/2 for nuclear accumulation of both GFP and GFP-JNK1. Thus, our results challenge the paradigm of increased nuclear localization of JNK broadly in response to all forms of stress-activation and are consistent with enhanced interactions of stress-activated JNK1 with scaffold and substrate proteins throughout the nucleus and the cytosol under conditions of hyperosmotic stress.

Collaboration


Dive into the Yvonne Y C Yeap's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Yan Yip

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clive N. May

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alphious Kedikaetswe

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge