Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvonne Y. Lai is active.

Publication


Featured researches published by Yvonne Y. Lai.


Pharmacological Research | 2013

Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: Effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment

Josée Guindon; Yvonne Y. Lai; Sara M. Takacs; Heather B. Bradshaw; Andrea G. Hohmann

Cisplatin, a platinum-derived chemotherapeutic agent, produces mechanical and coldallodynia reminiscent of chemotherapy-induced neuropathy in humans. The endocannabinoid system represents a novel target for analgesic drug development. The endocannabinoid signaling system consists of endocannabinoids (e.g. anandamide (AEA) and 2-arachidonoylglycerol (2-AG)), cannabinoid receptors (e.g. CB(1) and CB(2)) and the enzymes controlling endocannabinoid synthesis and degradation. AEA is hydrolyzed by fatty-acid amide hydrolase (FAAH) whereas 2-AG is hydrolyzed primarily by monoacylglycerol lipase (MGL). We compared effects of brain permeant (URB597) and impermeant (URB937) inhibitors of FAAH with an irreversible inhibitor of MGL (JZL184) on cisplatin-evoked behavioral hypersensitivities. Endocannabinoid modulators were compared with agents used clinically to treat neuropathy (i.e. the opioid analgesic morphine, the anticonvulsant gabapentin and the tricyclic antidepressant amitriptyline). Cisplatin produced robust mechanical and cold allodynia but did not alter responsiveness to heat. After neuropathy was fully established, groups received acute intraperitoneal (i.p.) injections of vehicle, amitriptyline (30 mg/kg), gabapentin (100 mg/kg), morphine (6 mg/kg), URB597 (0.1 or 1 mg/kg), URB937 (0.1 or 1 mg/kg) or JZL184 (1, 3 or 8 mg/kg). Pharmacological specificity was assessed by coadministering each endocannabinoid modulator with either a CB(1) (AM251 3 mg/kg), CB(2) (AM630 3 mg/kg), TRPV1 (AMG9810 3 mg/kg) or TRPA1 (HC030031 8 mg/kg) antagonist. Effects of cisplatin on endocannabinoid levels and transcription of receptors (CB(1), CB(2), TRPV1, TRPA1) and enzymes (FAAH, MGL) linked to the endocannabinoid system were also assessed. URB597, URB937, JZL184 and morphine reversed cisplatin-evoked mechanical and cold allodynia to pre-cisplatin levels. By contrast, gabapentin only partially reversed the observed allodynia while amitriptyline, administered acutely, was ineffective. CB(1) or CB(2) antagonists completely blocked the anti-allodynic effects of both FAAH (URB597, URB937) and MGL (JZL184) inhibitors to mechanical and cold stimulation. By contrast, the TRPV1 antagonist AMG9810 blocked the anti-allodynic efficacy of both FAAH inhibitors, but not the MGL inhibitor. By contrast, the TRPA1 antagonist HC30031 did not attenuate anti-allodynic efficacy of any endocannabinoid modulator. When the levels of endocannabinoids were examined, cisplatin increased both anandamide (AEA) and 2-arachidonoylglycerol (2-AG) levels in the lumbar spinal cord and decreased 2-AG levels (but not AEA) in dorsal hind paw skin. RT-PCR showed that mRNA for FAAH, but not other markers, was upregulated by cisplatin treatment in lumbar spinal cord. The present studies demonstrate that cisplatin alters endocannabinoid tone and that inhibition of endocannabinoid hydrolysis alleviates chemotherapy-induced mechanical and cold allodynia. The anti-allodynic effects of FAAH and MGL inhibitors are mediated by CB(1) and CB(2) cannabinoid receptors, whereas TRPV1, but not TRPA1, -dependent mechanisms contribute to the anti-allodynic efficacy of FAAH (but not MGL) inhibitors. Strikingly, endocannabinoid modulators potently suppressed cisplatin-evoked allodynia with a rapid onset and showed efficacy that equaled or exceeded that of major classes of anti-neuropathic pain medications used clinically. Thus, inhibition of endocannabinoid hydrolysis, via FAAH or MGL inhibitors, represents an efficacious pharmacological approach for suppressing chemotherapy-induced neuropathic pain.


PLOS ONE | 2011

LL37 and Cationic Peptides Enhance TLR3 Signaling by Viral Double-stranded RNAs

Yvonne Y. Lai; Sreedevi Adhikarakunnathu; Kanchan Bhardwaj; C. T. Ranjith-Kumar; Yahong Wen; Jarrat Jordan; Linda H. Wu; Bogdan Dragnea; Lani San Mateo; C. Cheng Kao

Background Toll-like Receptor 3 (TLR3) detects viral dsRNA during viral infection. However, most natural viral dsRNAs are poor activators of TLR3 in cell-based systems, leading us to hypothesize that TLR3 needs additional factors to be activated by viral dsRNAs. The anti-microbial peptide LL37 is the only known human member of the cathelicidin family of anti-microbial peptides. LL37 complexes with bacterial lipopolysaccharide (LPS) to prevent activation of TLR4, binds to ssDNA to modulate TLR9 and ssRNA to modulate TLR7 and 8. It synergizes with TLR2/1, TLR3 and TLR5 agonists to increase IL8 and IL6 production. This work seeks to determine whether LL37 enhances viral dsRNA recognition by TLR3. Methodology/Principal Findings Using a human bronchial epithelial cell line (BEAS2B) and human embryonic kidney cells (HEK 293T) transiently transfected with TLR3, we found that LL37 enhanced poly(I:C)-induced TLR3 signaling and enabled the recognition of viral dsRNAs by TLR3. The presence of LL37 also increased the cytokine response to rhinovirus infection in BEAS2B cells and in activated human peripheral blood mononuclear cells. Confocal microscopy determined that LL37 could co-localize with TLR3. Electron microscopy showed that LL37 and poly(I:C) individually formed globular structures, but a complex of the two formed filamentous structures. To separate the effects of LL37 on TLR3 and TLR4, other peptides that bind RNA and transport the complex into cells were tested and found to activate TLR3 signaling in response to dsRNAs, but had no effect on TLR4 signaling. This is the first demonstration that LL37 and other RNA-binding peptides with cell penetrating motifs can activate TLR3 signaling and facilitate the recognition of viral ligands. Conclusions/Significance LL37 and several cell-penetrating peptides can enhance signaling by TLR3 and enable TLR3 to respond to viral dsRNA.


Frontiers in Cellular Neuroscience | 2014

Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling

Michael J. Courtney; Li-Li Li; Yvonne Y. Lai

NMDA receptors (NMDAR) are glutamate-gated calcium channels that play pivotal roles in fundamental aspects of neuronal function. Dysregulated receptor function contributes to many disorders. Recruitment by NMDARs of calcium-dependent enzyme nNOS via PSD95 is seen as a key contributor to neuronal dysfunction. nNOS adaptor protein (NOS1AP), originally described as a competitor of PSD95:nNOS interaction, is regarded an inhibitor of NMDAR-driven nNOS function. In conditions of NMDAR hyperactivity such as excitotoxicity, one expects NOS1AP to be neuroprotective. Conditions of NMDAR hypoactivity, as thought to occur in schizophrenia, might be exacerbated by NOS1AP. Indeed GWAS have implicated NOS1AP and nNOS in schizophrenia. Several studies now indicate NOS1AP can mediate rather than inhibit NMDAR/nNOS-dependent responses, including excitotoxic signaling. Yet the concept of NOS1AP as an inhibitor of nNOS predominates in studies of human disease genetics. Here we review the experimental evidence to evaluate this apparent controversy, consider whether the known functions of NOS1AP might defend neurons against NMDAR dysregulation and highlight specific areas for future investigation to shed light on the functions of this adaptor protein.


Neuropharmacology | 2015

Small molecule inhibitors of PSD95-nNOS protein–protein interactions as novel analgesics

Wan Hung Lee; Zhili Xu; Nicole M. Ashpole; Andy Hudmon; Pushkar M. Kulkarni; Ganesh A. Thakur; Yvonne Y. Lai; Andrea G. Hohmann

Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 μM) and ZL006 (EC50: 12.88 μM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freunds adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists.


PLOS ONE | 2011

Viral Double-Strand RNA-Binding Proteins Can Enhance Innate Immune Signaling by Toll-Like Receptor 3

Yvonne Y. Lai; Guanghui Yi; Alice Chen; Kanchan Bhardwaj; Brady Tragesser; Rodrigo A. Valverde; Adam Zlotnick; Suchetana Mukhopadhyay; C. T. Ranjith-Kumar; C. Cheng Kao

Toll-like Receptor 3 (TLR3) detects double-stranded (ds) RNAs to activate innate immune responses. While poly(I:C) is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s) are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C) or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs) from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV) were also potent enhancers of TLR3 signaling by poly(I:C) or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3.


Behavioural Brain Research | 2016

Source memory in rats is impaired by an NMDA receptor antagonist but not by PSD95-nNOS protein-protein interaction inhibitors.

Alexandra E. Smith; Zhili Xu; Yvonne Y. Lai; Pushkar M. Kulkarni; Ganesh A. Thakur; Andrea G. Hohmann; Jonathon D. Crystal

Limitations of preclinical models of human memory contribute to the pervasive view that rodent models do not adequately predict therapeutic efficacy in producing cognitive impairments or improvements in humans. We used a source-memory model (i.e., a representation of the origin of information) we developed for use in rats to evaluate possible drug-induced impairments of both spatial memory and higher order memory functions in the same task. Memory impairment represents a major barrier to use of NMDAR antagonists as pharmacotherapies. The scaffolding protein postsynaptic density 95kDa (PSD95) links NMDARs to the neuronal enzyme nitric oxide synthase (nNOS), which catalyzes production of the signaling molecule nitric oxide (NO). Therefore, interrupting PSD95-nNOS protein-protein interactions downstream of NMDARs represents a novel therapeutic strategy to interrupt NMDAR-dependent NO signaling while bypassing unwanted side effects of NMDAR antagonists. We hypothesized that the NMDAR antagonist MK-801 would impair source memory. We also hypothesized that PSD95-nNOS inhibitors (IC87201 and ZL006) would lack the profile of cognitive impairment associated with global NMDAR antagonists. IC87201 and ZL006 suppressed NMDA-stimulated formation of cGMP, a marker of NO production, in cultured hippocampal neurons. MK-801, at doses that did not impair motor function, impaired source memory under conditions in which spatial memory was spared. Thus, source memory was more vulnerable than spatial memory to impairment. By contrast, PSD95-nNOS inhibitors, IC87201 and ZL006, administered at doses that are behaviorally effective in rats, spared source memory, spatial memory, and motor function. Thus, PSD95-nNOS inhibitors are likely to exhibit favorable therapeutic ratios compared to NMDAR antagonists.


Pain | 2018

Disruption of nNOS-NOS1AP protein-protein interactions suppresses neuropathic pain in mice

Wan-Hung Lee; Li-Li Li; Aarti R. Chawla; Andy Hudmon; Yvonne Y. Lai; Michael J. Courtney; Andrea G. Hohmann

Abstract Elevated N-methyl-D-aspartate receptor (NMDAR) activity is linked to central sensitization and chronic pain. However, NMDAR antagonists display limited therapeutic potential because of their adverse side effects. Novel approaches targeting the NR2B-PSD95-nNOS complex to disrupt signaling pathways downstream of NMDARs show efficacy in preclinical pain models. Here, we evaluated the involvement of interactions between neuronal nitric oxide synthase (nNOS) and the nitric oxide synthase 1 adaptor protein (NOS1AP) in pronociceptive signaling and neuropathic pain. TAT-GESV, a peptide inhibitor of the nNOS–NOS1AP complex, disrupted the in vitro binding between nNOS and its downstream protein partner NOS1AP but not its upstream protein partner postsynaptic density 95 kDa (PSD95). Putative inactive peptides (TAT-cp4GESV and TAT-GESV&Dgr;1) failed to do so. Only the active peptide protected primary cortical neurons from glutamate/glycine-induced excitotoxicity. TAT-GESV, administered intrathecally (i.t.), suppressed mechanical and cold allodynia induced by either the chemotherapeutic agent paclitaxel or a traumatic nerve injury induced by partial sciatic nerve ligation. TAT-GESV also blocked the paclitaxel-induced phosphorylation at Ser15 of p53, a substrate of p38 MAPK. Finally, TAT-GESV (i.t.) did not induce NMDAR-mediated motor ataxia in the rotarod test and did not alter basal nociceptive thresholds in the radiant heat tail-flick test. These observations support the hypothesis that antiallodynic efficacy of an nNOS–NOS1AP disruptor may result, at least in part, from blockade of p38 MAPK-mediated downstream effects. Our studies demonstrate, for the first time, that disrupting nNOS–NOS1AP protein–protein interactions attenuates mechanistically distinct forms of neuropathic pain without unwanted motor ataxic effects of NMDAR antagonists.


Neuroscience | 2017

Small molecule inhibitors of PSD95-nNOS protein-protein interactions suppress formalin-evoked Fos protein expression and nociceptive behavior in rats.

Lawrence M. Carey; Wan-Hung Lee; Tannia Gutierrez; Pushkar M. Kulkarni; Ganesh A. Thakur; Yvonne Y. Lai; Andrea G. Hohmann

Excessive activation of NMDA receptor (NMDAR) signaling within the spinal dorsal horn contributes to central sensitization and the induction and maintenance of pathological pain states. However, direct antagonism of NMDARs produces undesirable side effects which limit their clinical use. NMDAR activation produces central sensitization, in part, by initiating a signaling cascade that activates the enzyme neuronal nitric oxide synthase (nNOS) and generates the signaling molecule nitric oxide. NMDAR-mediated activation of nNOS requires a scaffolding protein, postsynaptic density protein 95kDa (PSD95), which tethers nNOS to NMDARs. Thus, disrupting the protein-protein interaction between PSD95 and nNOS may inhibit pro-nociceptive signaling mechanisms downstream of NMDARs and suppress central sensitization while sparing unwanted side effects associated with NMDAR antagonists. We examined the impact of small molecule PSD95-nNOS protein-protein interaction inhibitors (ZL006, IC87201) on both nociceptive behavior and formalin-evoked Fos protein expression within the lumbar spinal cord of rats. Comparisons were made with ZL007, an inactive analog of ZL006, and the NMDAR antagonist MK-801. IC87201 and ZL006, but not ZL007, suppressed phase 2 of formalin-evoked pain behavior and decreased the number of formalin-induced Fos-like immunoreactive cells in spinal dorsal horn regions associated with nociceptive processing. MK-801 suppressed Fos protein expression in both dorsal and ventral horns. MK-801 produced motor ataxia in the rotarod test whereas IC87201 and ZL006 failed to do so. ZL006 but not ZL007 suppressed paclitaxel-induced mechanical and cold allodynia in a model of chemotherapy-induced neuropathic pain. Co-immunoprecipitation experiments revealed the presence of the PSD95-nNOS complex in lumbar spinal cord of paclitaxel-treated rats, although ZL006 did not reliably disrupt the complex in all subjects. The present findings validate use of putative small molecule PSD95-nNOS protein-protein interaction inhibitors as novel analgesics and demonstrate, for the first time, that these inhibitors suppress inflammation-evoked neuronal activation at the level of the spinal dorsal horn.


Translational Psychiatry | 2018

PSD95 and nNOS interaction as a novel molecular target to modulate conditioned fear: relevance to PTSD

L. P. Li; E. T. Dustrude; M. M. Haulcomb; Aline Rezende Abreu; Stephanie D. Fitz; P. L. Johnson; Ganesh A. Thakur; Andrei I. Molosh; Yvonne Y. Lai; Anantha Shekhar

Stimulation of N-methyl-D-aspartic acid receptors (NMDARs) and the resulting increase of nitric oxide (NO) production are critical for fear memory formation. Following NMDAR activation, efficient production of NO requires linking the 95 kDa postsynaptic density protein (PSD95), a scaffolding protein to neuronal nitric oxide synthase (nNOS). A variety of previously studied NMDAR antagonists and NOS inhibitors can disrupt fear conditioning, but they also affect many other CNS functions such as motor activity, anxiety, and learning. We hypothesized that disrupting nNOS and PSD95 interaction in the amygdala, a critical site for fear memory formation, will reduce conditioned fear. Our results show that systemic treatment with ZL006, a compound that disrupts PSD95/nNOS binding, attenuates fear memory compared to its inactive isomer ZL007. Co-immunoprecipitation after fear conditioning showed a robust increase in the amygdala PSD95/nNOS binding, which was blocked by systemic pre-administration of ZL006. Treatment of amygdala slices with ZL006 also impaired long-term potentiation (LTP), a cellular signature of synaptic plasticity. Direct intra-amygdala infusion of ZL006 also attenuated conditioned fear. Finally, unlike NMDAR antagonist MK-801, ZL006 does not affect locomotion, social interaction, object recognition memory, and spatial memory. These findings support the hypothesis that disrupting the PSD95/nNOS interaction downstream of NMDARs selectively reduces fear memory, and highlights PSD95/nNOS interaction as a novel target for fear-related disorders, such as posttraumatic stress disorder.


Molecular Pain | 2018

ZLc002, a putative small-molecule inhibitor of nNOS interaction with NOS1AP, suppresses inflammatory nociception and chemotherapy-induced neuropathic pain and synergizes with paclitaxel to reduce tumor cell viability:

Wan-Hung Lee; Lawrence M. Carey; Li-Li Li; Zhili Xu; Yvonne Y. Lai; Michael J Courtney; Andrea G. Hohmann

Elevated N-methyl-D-aspartate receptor activity contributes to central sensitization. Our laboratories and others recently reported that disrupting protein–protein interactions downstream of N-methyl-D-aspartate receptors suppresses pain. Specifically, disrupting binding between the enzyme neuronal nitric oxide synthase and either its upstream (postsynaptic density 95 kDa, PSD95) or downstream (e.g. nitric oxide synthase 1 adaptor protein, NOS1AP) protein partners suppressed inflammatory and/or neuropathic pain. However, the lack of a small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor has hindered efforts to validate the therapeutic utility of disrupting the neuronal nitric oxide synthase-NOS1AP interface as an analgesic strategy. We, therefore, evaluated the ability of a putative small-molecule neuronal nitric oxide synthase-NOS1AP inhibitor ZLc002 to disrupt binding between neuronal nitric oxide synthase and NOS1AP using ex vivo, in vitro, and purified recombinant systems and asked whether ZLc002 would suppress inflammatory and neuropathic pain in vivo. In vitro, ZLc002 reduced co-immunoprecipitation of full-length NOS1AP and neuronal nitric oxide synthase in cultured neurons and in HEK293T cells co-expressing full-length neuronal nitric oxide synthase and NOS1AP. However, using a cell-free biochemical binding assay, ZLc002 failed to disrupt the in vitro binding between His-neuronal nitric oxide synthase1-299 and glutathione S-transferase-NOS1AP400-506, protein sequences containing the required binding domains for this protein–protein interaction, suggesting an indirect mode of action in intact cells. ZLc002 (4–10 mg/kg i.p.) suppressed formalin-evoked inflammatory pain in rats and reduced Fos protein-like immunoreactivity in the lumbar spinal dorsal horn. ZLc002 also suppressed mechanical and cold allodynia in a mouse model of paclitaxel-induced neuropathic pain. Anti-allodynic efficacy was sustained for at least four days of once daily repeated dosing. ZLc002 also synergized with paclitaxel when administered in combination to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability but did not alter tumor cell viability without paclitaxel. Our results verify that ZLc002 disrupts neuronal nitric oxide synthase-NOS1AP interaction in intact cells and demonstrate, for the first time, that systemic administration of a putative small-molecule inhibitor of neuronal nitric oxide synthase-NOS1AP suppresses inflammatory and neuropathic pain.

Collaboration


Dive into the Yvonne Y. Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ganesh A. Thakur

College of Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Wan-Hung Lee

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Zhili Xu

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Cheng Kao

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

C. T. Ranjith-Kumar

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge