Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Z. Hong Zhou is active.

Publication


Featured researches published by Z. Hong Zhou.


Nature Nanotechnology | 2010

A novel intracellular protein delivery platform based on single-protein nanocapsules

Ming Yan; Juanjuan Du; Zhen Gu; Min Liang; Yufang Hu; Wenjun Zhang; Saul J. Priceman; Lily Wu; Z. Hong Zhou; Zheng Liu; Tatiana Segura; Yi Tang; Yunfeng Lu

An average cell contains thousands of proteins that participate in normal cellular functions, and most diseases are somehow related to the malfunctioning of one or more of these proteins. Protein therapy, which delivers proteins into the cell to replace the dysfunctional protein, is considered the most direct and safe approach for treating disease. However, the effectiveness of this method has been limited by its low delivery efficiency and poor stability against proteases in the cell, which digest the protein. Here, we show a novel delivery platform based on nanocapsules consisting of a protein core and a thin permeable polymeric shell that can be engineered to either degrade or remain stable at different pHs. Non-degradable capsules show long-term stability, whereas the degradable ones break down their shells, enabling the core protein to be active once inside the cells. Multiple proteins can be delivered to cells with high efficiency while maintaining low toxicity, suggesting potential applications in imaging, therapy and cosmetics fields.


Cell | 2010

3.3 Å Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry

Xing Zhang; Lei Jin; Qin Fang; Wong H. Hui; Z. Hong Zhou

To achieve cell entry, many nonenveloped viruses must transform from a dormant to a primed state. In contrast to the membrane fusion mechanism of enveloped viruses (e.g., influenza virus), this membrane penetration mechanism is poorly understood. Here, using single-particle cryo-electron microscopy, we report a 3.3 A structure of the primed, infectious subvirion particle of aquareovirus. The density map reveals side-chain densities of all types of amino acids (except glycine), enabling construction of a full-atom model of the viral particle. Our structure and biochemical results show that priming involves autocleavage of the membrane penetration protein and suggest that Lys84 and Glu76 may facilitate this autocleavage in a nucleophilic attack. We observe a myristoyl group, covalently linked to the N terminus of the penetration protein and embedded in a hydrophobic pocket. These results suggest a well-orchestrated process of nonenveloped virus entry involving autocleavage of the penetration protein prior to exposure of its membrane-insertion finger.


Nature | 2008

3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy

Xuekui Yu; Lei Jin; Z. Hong Zhou

Cytoplasmic polyhedrosis virus (CPV) is unique within the Reoviridae family in having a turreted single-layer capsid contained within polyhedrin inclusion bodies, yet being fully capable of cell entry and endogenous RNA transcription. Biochemical data have shown that the amino-terminal 79 residues of the CPV turret protein (TP) is sufficient to bring CPV or engineered proteins into the polyhedrin matrix for micro-encapsulation. Here we report the three-dimensional structure of CPV at 3.88 Å resolution using single-particle cryo-electron microscopy. Our map clearly shows the turns and deep grooves of α-helices, the strand separation in β-sheets, and densities for loops and many bulky side chains; thus permitting atomic model-building effort from cryo-electron microscopy maps. We observed a helix-to-β-hairpin conformational change between the two conformational states of the capsid shell protein in the region directly interacting with genomic RNA. We have also discovered a messenger RNA release hole coupled with the mRNA capping machinery unique to CPV. Furthermore, we have identified the polyhedrin-binding domain, a structure that has potential in nanobiotechnology applications.


ACS Nano | 2011

Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism

Huan Meng; Sui Yang; Zongxi Li; Tian Xia; Justin Chen; Zhaoxia Ji; Haiyuan Zhang; Xiang Wang; Sijie Lin; Connie Huang; Z. Hong Zhou; Jeffrey I. Zink; Andre E. Nel

Although the aspect ratio (AR) of engineered nanomaterials (ENMs) is one of the key physicochemical parameters that could determine biological outcome, not much is understood about how AR contributes to shaping biological outcome. By using a mesoporous silica nanoparticle (MSNP) library that has been constructed to cover a range of different lengths, we could demonstrate that the AR of rod-shaped particles determines the rate and abundance of MSNP uptake by a macropinocytosis process in HeLa and A549 cancer cell lines. MSNPs with an AR of 2.1-2.5 were taken up in larger quantities compared to shorter or longer length rods by a process that is sensitive to amiloride, cytochalasin D, azide, and 4 °C inhibition. The rods with intermediary AR also induced the maximal number of filopodia, actin polymerization, and activation of small GTP-binding proteins (e.g., Rac1, CDC42) that involve assembly of the actin cytoskeleton and filopodia formation. When assessing the role of AR in the delivery of paclitaxel or camptothecin, the rods with AR 2.1-2.5 were clearly more efficient for drug delivery and generation of cytotoxic killing in HeLa cells. All considered, our data suggest an active sensoring mechanism by which HeLa and A549 cells are capable of detecting AR differences in MSNP to the extent that accelerated macropinocytosis can be used to achieve more efficient drug delivery.


Nature Structural & Molecular Biology | 2013

Cryo-EM structure of the mature dengue virus at 3.5-Å resolution

Xiaokang Zhang; Peng Ge; Xuekui Yu; Jennifer M Brannan; Guo-Qiang Bi; Qinfen Zhang; Stan Schein; Z. Hong Zhou

Regulated by pH, membrane-anchored proteins E and M function during dengue virus maturation and membrane fusion. Our atomic model of the whole virion from cryo–electron microscopy at 3.5-Å resolution reveals that in the mature virus at neutral extracellular pH, the N-terminal 20-amino-acid segment of M (involving three pH-sensing histidines) latches and thereby prevents spring-loaded E fusion protein from prematurely exposing its fusion peptide. This M latch is fastened at an earlier stage, during maturation at acidic pH in the trans-Golgi network. At a later stage, to initiate infection in response to acidic pH in the late endosome, M releases the latch and exposes the fusion peptide. Thus, M serves as a multistep chaperone of E to control the conformational changes accompanying maturation and infection. These pH-sensitive interactions could serve as targets for drug discovery.


Virus Research | 2009

Influenza virus morphogenesis and budding

Debi P. Nayak; Rilwan Balogun; Hiroshi Yamada; Z. Hong Zhou; Subrata Barman

Abstract Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major sub-viral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. The presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in bud initiation, bud growth and bud scission/release require involvement both viral and host components and can affect bud closing and virus release in both positive and negative ways. Among the viral components, M1, M2 and NA play important roles in bud release and M1, M2 and NA mutations all affect the morphology of buds and released viruses. Disassembly of host cortical actin microfilaments at the pinching-off site appears to facilitate bud fission and release. Bud scission is energy dependent and only a small fraction of virus buds present on the cell surface is released. Discontinuity of M1 layer underneath the lipid bilayer, absence of outer membrane spikes, absence of lipid rafts in the lipid bilayer, as well as possible presence of M2 and disassembly of cortical actin microfilaments at the pinching-off site appear to facilitate bud fission and bud release. We provide our current understanding of these important processes leading to the production of infectious influenza virus particles.


Nature Immunology | 2015

A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus

Wanwisa Dejnirattisai; Wiyada Wongwiwat; Sunpetchuda Supasa; Xiaokang Zhang; Xinghong Dai; Alexander Rouvinski; Amonrat Jumnainsong; Carolyn Edwards; Nguyen Than Ha Quyen; Thaneeya Duangchinda; Jonathan M. Grimes; Wen-Yang Tsai; Chih-Yun Lai; Wei-Kung Wang; Prida Malasit; Jeremy Farrar; Cameron P. Simmons; Z. Hong Zhou; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton

Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.


Nature Structural & Molecular Biology | 2001

Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus

Z. Hong Zhou; Matthew L. Baker; Wen Jiang; Matthew Dougherty; Joanita Jakana; Gang Dong; Guangying Lu; Wah Chiu

The three-dimensional structure of rice dwarf virus was determined to 6.8 Å resolution by single particle electron cryomicroscopy. By integrating the structural analysis with bioinformatics, the folds of the proteins in the double-shelled capsid were derived. In the outer shell protein, the uniquely orientated upper and lower domains are composed of similar secondary structure elements but have different relative orientations from that of bluetongue virus in the same Reoviridae family. Differences in both sequence and structure between these proteins may be important in defining virus–host interactions. The inner shell protein adopts a conformation similar to other members of Reoviridae, suggesting a common ancestor that has evolved to infect hosts ranging from plants to animals. Symmetry mismatch between the two shells results in nonequivalent, yet specific, interactions that contribute to the stability of this large macromolecular machine.


Science | 2010

Cryo-EM Model of the Bullet-Shaped Vesicular Stomatitis Virus

Peng Ge; Jun Tsao; Stan Schein; Todd J. Green; Ming Luo; Z. Hong Zhou

VSV in 3D Rhabdoviruses are a family of negative-stranded RNA viruses that includes rabies virus, which have a characteristic bullet shape. Though structures of individual rhabdovirus proteins have been reported, how these are organized into a bullet shape has remained unclear. Now, Ge et al. (p. 689) report a cryo-electron microscopy structure of a model rhabdovirus, vesicular stomatitis virus. The structural data and examination of mutants allows modeling of virion assembly. The structure of a negative-strand RNA virus suggests how bullet-shaped rhabdoviruses assemble. Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo–electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins

Jiansen Jiang; Xuefeng Zhang; Yong Chen; Yi Wu; Z. Hong Zhou; Zengyi Chang; Sen-Fang Sui

Cells use molecular chaperones and proteases to implement the essential quality control mechanism of proteins. The DegP (HtrA) protein, essential for the survival of Escherichia coli cells at elevated temperatures with homologues found in almost all organisms uniquely has both functions. Here we report a mechanism for DegP to activate both functions via formation of large cage-like 12- and 24-mers after binding to substrate proteins. Cryo-electron microscopic and biochemical studies revealed that both oligomers are consistently assembled by blocks of DegP trimers, via pairwise PDZ1–PDZ2 interactions between neighboring trimers. Such interactions simultaneously eliminate the inhibitory effects of the PDZ2 domain. Additionally, both DegP oligomers were also observed in extracts of E. coli cells, strongly implicating their physiological importance.

Collaboration


Dive into the Z. Hong Zhou's collaboration.

Top Co-Authors

Avatar

Jiansen Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Xuekui Yu

University of California

View shared research outputs
Top Co-Authors

Avatar

Ivo Atanasov

University of California

View shared research outputs
Top Co-Authors

Avatar

Peng Ge

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel B. Toso

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinghong Dai

University of California

View shared research outputs
Top Co-Authors

Avatar

Joanita Jakana

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ren Sun

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge