Z. Sefrioui
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Z. Sefrioui.
Science | 2008
J. Garcia-Barriocanal; A. Rivera-Calzada; M. Varela; Z. Sefrioui; E. Iborra; C. Leon; S. J. Pennycook; J. Santamaria
The search for electrolyte materials with high oxygen conductivities is a key step toward reducing the operation temperature of fuel cells, which is currently above 700°C. We report a high lateral ionic conductivity, showing up to eight orders of magnitude enhancement near room temperature, in yttria-stabilized zirconia (YSZ)/strontium titanate epitaxial heterostructures. The enhancement of the conductivity is observed, along with a YSZ layer thickness–independent conductance, showing that it is an interface process. We propose that the atomic reconstruction at the interface between highly dissimilar structures (such as fluorite and perovskite) provides both a large number of carriers and a high-mobility plane, yielding colossal values of the ionic conductivity.
Physical Review B | 2003
Z. Sefrioui; D. Arias; V. Peña; J. E. Villegas; M. Varela; P. Prieto; C. Leon; J. L. Martinez; J. Santamaria
We study the interplay between magnetism and superconductivity in high-quality YBa_(2)Cu_(3)O_(7)(YBCO)/La_(0.7)Ca_(0.3)MnO_(3)(LCMO) superlattices. We find evidence for the YBCO superconductivity depression in the presence of the LCMO layers. We show that due to its short coherence length, superconductivity survives in the YBCO down to a much smaller thickness in the presence of the magnetic layer than in low Tc superconductors. We also find that for a fixed thickness of the superconducting layer, superconductivity is depressed over a thickness interval of the magnetic layer in the 100 nm range. This is a much longer length scale than that predicted by the theory of ferromagnetic/superconducting proximity effect.
Advanced Materials | 2010
J. Garcia-Barriocanal; F. Y. Bruno; A. Rivera-Calzada; Z. Sefrioui; Norbert M. Nemes; M. García-Hernández; Juan Rubio-Zuazo; Germán R. Castro; M. Varela; Stephen J. Pennycook; C. Leon; Jacobo Santamaria
We report on the charge transfer at the interface between a band (SrTiO3) and a Mott insulator (LaMnO3) in epitaxial superlattices. We have used combined atomic resolution electron microscopy and spectroscopy, synchrotron X ray reciprocal space maps and magneto transport measurements, to characterize the interface properties. The LaMnO3 layers are always started and terminated in (LaO) planes, giving an overall electron doping to the system. However, the direction of charge leakage is determined by the manganite to titanate thickness ratio in a way controlled by the different epitaxial strain patterns. This result may provide a clue to optimize oxide devices such as magnetic tunnel junctions and field effect transistors whose operation is determined by the interface properties.
Applied Physics Letters | 2002
Z. Sefrioui; Marta Varela; V. Peña; D. Arias; C. Leon; J. Santamaria; J. E. Villegas; J. L. Martı́nez; W. Saldarriaga; P. Prieto
We report on the depression of the superconducting critical temperature of ultrathin YBa2Cu3O7 (YBCO) layers, when their thickness is reduced in the presence of La0.7Ca0.3MnO3 (LCMO) magnetic layers in [LCMO (15 unit cells)/YBCO (N unit cells)] superlattices. The thickness of the manganite layer is kept at 15 unit cells and the YBCO thickness is varied between N=12 and N=1 unit cells. The structural analysis, using x-ray diffraction and electron microscopy, shows sharp interfaces with little structural disorder. While a critical temperature, TC=85 K, is found for 12 YBCO unit cells, superconductivity is completely suppressed for YBCO layer thickness below 3 unit cells. The possible interaction between superconductivity and magnetism is investigated.
Solid-state Electronics | 2003
M. Varela; Andrew R. Lupini; Stephen J. Pennycook; Z. Sefrioui; Jacobo Santamaria
The structure of interfaces in superconducting/ferromagnetic YBa2Cu3O7−x/La0.67Ca0.33MnO3 superlattices has been analyzed by scanning transmission electron microscopy and high spatial resolution electron energy loss spectroscopy. Individual layers are flat over long lateral distances. The interfaces are coherent, free of defects, exhibiting no roughness, and are located at the BaO plane of the superconductor. Concerning chemical disorder, EELS measurements show the absence of measurable chemical interdiffusion within experimental error bars.
ChemPhysChem | 2009
J. Garcia-Barriocanal; A. Rivera-Calzada; M. Varela; Z. Sefrioui; M.R. Díaz-Guillén; Karla J. Moreno; José A. Díaz-Guillén; E. Iborra; Antonio F. Fuentes; Stephen J. Pennycook; C. Leon; Jacobo Santamaria
Reducing the operation temperature of solid oxide fuel cells is a major challenge towards their widespread use for power generation. This has triggered an intense materials research effort involving the search for novel electrolytes with higher ionic conductivity near room temperature. Two main directions are being currently followed: the use of doping strategies for the synthesis of new bulk materials and the implementation of nanotechnology routes for the fabrication of artificial nanostructures with improved properties. In this paper, we review our recent work on solid oxide fuel cell electrolyte materials in these two directions, with special emphasis on the importance of disorder and reduced dimensionality in determining ion conductivity. Substitution of Ti for Zr in the A(2)Zr(2-) (y)Ti(y)O(7) (A = Y, Dy, and Gd) series, directly related to yttria stabilized zirconia (a common fuel cell electrolyte), allows controlling ion mobility over wide ranges. In the second scenario we describe the strong enhancement of the conductivity occurring at the interfaces of superlattices made by alternating strontium titanate and yttria stabilized zirconia ultrathin films. We conclude that cooperative effects in oxygen dynamics play a primary role in determining ion mobility of bulk and artificially nanolayered materials and should be considered in the design of new electrolytes with enhanced conductivity.
Nature Communications | 2014
Norbert M. Nemes; G. Sánchez Santolino; María Varela del Arco; Z. Sefrioui; Carlos León Yebra; Jacobo Santamaría Sánchez-Barriga
Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.
Applied Physics Letters | 1998
Z. Sefrioui; D. Arias; M. A. Navacerrada; M. Varela; G. D. Loos; M. L. Lucía; Jacobo Santamaria; F. Sánchez-Quesada; M. A. López de la Torre
We have studied the effect of He+ irradiation on the electrical resistivity and Curie temperature of ferromagnetic SrRuO3 thin films. An evolution from metallic to insulating behavior is observed when He+ ion fluence is increased, suggesting a metal-insulator transition. Damage by ion irradiation produces a strong decrease of the Curie temperature. On the other hand, no significant change in T-c (similar to 160 K) takes place in fresh samples grown at different substrate temperatures. We discuss the possible correlation between structural changes induced by irradiation, which reflect in an increase of the pseudocubic lattice parameter, and the observed depression of T-c.
Applied Physics Letters | 2008
F. Y. Bruno; J. Garcia-Barriocanal; M. Torija; A. Rivera; Z. Sefrioui; Chris Leighton; C. Leon; J. Santamaria
Electrical transport properties of heteroepitaxial p-n junctions made of La_(0.8)Sr_(0.2)CoO_(3) and SrTi_(0.99)Nb_(0.01)O_(3) were studied. Junctions display highly rectifying current-voltage characteristics over a wide temperature range (20–300 K). Two distinct transport mechanisms are identified: tunneling assisted by interface states at T<130 K and diffusion/recombination at higher temperatures. Capacitance-voltage characteristics are used to determine the junction built-in potential at different frequencies. A capacitance relaxation is found due to charge trapping at interface states. Interface states, which deeply affect transport, are discussed in connection to charge-transfer processes related to the polarity mismatch at the interface.
International Journal of Modern Physics B | 2013
Jacobo Santamaria; J. Garcia-Barriocanal; Z. Sefrioui; C. Leon
Interfaces between correlated oxides are attracting great interest. Electron correlations give rise to novel forms of couplings between electronic ground states at both sides of the interface. The bonding discontinuity at the interface between magnetic and nonmagnetic oxides is at the origin of a form of low dimensional magnetism in the otherwise nonmagnetic material. Its origin is the splitting of its bands due to the hybridization with the exchange split bands of the magnetic material. This induced magnetism could find interesting functionalities in devices with operation controlled by the interface such as tunnel or field effect devices of interest in spintronics.