Z. V. Kovaleva
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Z. V. Kovaleva.
Cell Cycle | 2012
Larisa Alekseenko; V. I. Zemelko; V. V. Zenin; N. A. Pugovkina; I. V. Kozhukharova; Z. V. Kovaleva; T. M. Grinchuk; Irina I. Fridlyanskaya; Nikolay Nikolsky
Embryonic stem cells (ESC) are able to self-renew and to differentiate into any cell type. To escape error transmission to future cell progeny, ESC require robust mechanisms to ensure genomic stability. It was stated that stress defense of mouse and human ESC against oxidative stress and irradiation is superior compared with differentiated cells. Here, we investigated heat shock response of human ESC (hESC) and their differentiated progeny. Fibroblast-like cells were generated by spontaneous hESC differentiation via embryoid bodies. Like normal human diploid fibroblasts, these cells have a finite lifespan in culture, undergo replicative senescence and die. We found that sublethal heat shock affected survival of both cell types, but in hESC it induced apoptosis, whereas in differentiated cells it produced cell cycle arrest and premature senescence phenotype. Heat shock survived hESC and differentiated cells restored the properties of initial cells. Heated hESC progeny exhibited pluripotent markers and the capacity to differentiate into the cells of three germ layers. Fibroblast-like cells resisted heat shock, proliferated for a limited number of passages and entered replicative senescence as unheated parental cells. Taken together, these results show for the first time that both hESC and their differentiated derivatives are sensitive to heat shock, but the mechanisms of their stress response are different: hESC undergo apoptosis, whereas differentiated cells under the same conditions exhibit stress-induced premature senescence (SIPS) phenotype. Both cell types that survived sublethal heat shock sustain parental cell properties.
Cell and Tissue Biology | 2013
A. P. Domnina; Irina I. Fridlyanskaya; V. I. Zemelko; N. A. Pugovkina; Z. V. Kovaleva; V. V. Zenin; T. M. Grinchuk; N. N. Nikolsky
Human-endometrium mesenchymal stem cells (eMSCs) are a promising source of stem cells for regenerative medicine. A large amount of these cells accumulated by in vitro cultivation are usually required for transplantation into patients. We established several cell eMSC lines and cultivated them over a long period to examine the possibility of spontaneous transformation. All cell lines exhibit limited lifespan, undergo replicative senescence, and die. Karyotypic analysis upon different passages reveals that most cells display karyotypic stability. Thus, extended in vitro cultivation of eMSCs does not lead to spontaneous transformation, which makes therapeutic application of these cells safe for patients. During long-term cultivation, eMSCs maintain the expression of surface markers.
Redox biology | 2017
Olga Lyublinskaya; Ju.S. Ivanova; N. A. Pugovkina; I. V. Kozhukharova; Z. V. Kovaleva; Shatrova An; Aksenov Nd; V. V. Zenin; Yu.A. Kaulin; I.A. Gamaley; Nikolay Nikolsky
Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa) maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H2DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed.
Cell and Tissue Biology | 2014
V. I. Zemelko; I. V. Kozhucharova; Z. V. Kovaleva; A. P. Domnina; N. A. Pugovkina; Irina I. Fridlyanskaya; M. V. Puzanov; S. V. Anisimov; T. M. Grinchuk; N. N. Nikolsky
The ability of mesenchymal stem cells (MSCs) to differentiate into neuronal lineage determines the potential of these cells as a substrate for a cell replacement therapy. In this paper we compare the neurogenic potential of the MSCs from different donors, isolated from the bone marrow (BMSC), subcutaneous adipose tissue (AD MSC) and menstrual blood (eMSC). It was established that the native eMCSs, BMSCs and AD MSCs express neuronal marker β-III-tubulin with a frequency of 90, 50 and 14%, respectively. Also we showed that the eMSCs have a high endogenous level of brain-derived neurotrophic factor (BDNF), whereas the BMSCs and the AD MSCs are characterized by low basal BDNF levels. An induction of neuronal differentiation in the studied MSCs using differentiation medium containing B27 and N2 supplements, 5-azacytidine, retinoic acid, IBMX and dbcAMP induced changes in the cells morphology, the increase of β-III-tubulin expression, and the appearance of neuronal markers GFAP, NF-H, NeuN and MAP2. During the differentiation the BDNF secretion was significantly enhanced in the BMSCs and decreased in the eMSCs cultures. However, no correlation between the basal and induced levels of the neuronal markers expression in the studied MSCs has been established.
Cell and Tissue Biology | 2013
V. P. Ivanova; Z. V. Kovaleva; V. V. Anokhina; A. I. Krivchenko
The effect of collagen tripeptide fragment GER on the adhesion and spreading of mouse embryonic fibroblasts STO to different substrates (polystyrene plastic, poly-L-lysine, fibronectin, gelatin) has been studied. It was found that tripeptide GER was involved in fibroblast adhesion and spreading. The cell response depended both on the mode of tripeptide addition to culture medium and the substrate type. Coincubation of fibroblasts with tripeptide stimulated the cell attachment and spreading to untreated plastic and plastic coated with fibronectin or gelatin but did not change cell adhesion to immobilized poly-L-lysine. Preincubation of cells with tripeptide resulted in partial inhibition of fibroblast adhesion and spreading on fibronectin- and gelatin-coated substrata. It was shown that activation and inhibition of adhesive processes after tripeptide treating was higher on fibronectin than gelatin. The data obtained support the assumption about concerted action of tripeptide GER (activity was dependent both on the used concentration of the tripeptide and the mode of tripeptide addition to culture medium) and chemical characteristics of substrate (polymers of styrene and L-lysine, ECM proteins in native (fibronectin) or partly denatured (gelatin) form) on the cell adhesion and spreading. The main targets that GER peptide may affect during the formation of cell-substrate interactions are discussed.
Cell and Tissue Biology | 2013
I. V. Kozhukharova; T. M. Grinchuk; N. A. Pugovkina; Z. V. Kovaleva; Larisa Alekseenko; N. N. Nikolskiy
The cytotoxic effect of the anticancer drug doxorubicin (DR) on human embryonic stem cells (ESCs) C910 and fibroblasts spontaneously differentiated from these cells has been examined. The fibroblasts retained a diploid karyotype. It was found that ESCs are more sensitive to DR than fibroblasts: the DR dose killing 20% of cells was 0.01 and 0.1 μg/mL, respectively. DR induced ESC apoptotic death and reduced both ESC and fibroblast proliferation. DR reversibly inhibited ESC, but not fibroblast, proliferation. Thus, we demonstrated that ESCs and differentiated derivatives thereof are distinguished by sensitivity and response to the genotoxic agent.
International Journal of Hematology | 2018
I. V. Kozhukharova; V. I. Zemelko; Z. V. Kovaleva; Larisa Alekseenko; Olga Lyublinskaya; Nikolay Nikolsky
Doxorubicin (Dox) is an effective anticancer drug with known activity against a wide spectrum of malignancies, hematologic malignancies in particular. Despite extensive clinical use, the mechanisms of its side effects and negative action on normal cells remain under study. The aim of this study was to investigate the effect of Dox on cultured human mesenchymal stem cells (MSCs) derived from menstrual blood (eMSCs), bone marrow (BMSCs) and adipose tissue (AMSCs). Dox treatment in high doses decreased the survival of MSCs in a dose-dependent manner. Clinically relevant low doses of Dox induced premature senescence of eMSCs, BMSCs and AMSCs, but did not kill the cells. Dox caused cell cycle arrest and formation of γ-H2AX foci, and increased the number of SA-β-gal-positive cells. BMSCs entered premature senescence earlier than other MSCs. It has been reported that neural-like cells differentiated from MSCs of various origins are more sensitive to Dox than their parent cells. Dox-treated differentiated MSCs exhibited lower viability and earlier generation of γ-H2AX foci. Dox administration inhibited secretory activity in neural-like cells. These findings suggest that a clinically relevant Dox dose damages cultured MSCs, inducing their premature senescence. MSCs are more resistant to this damage than differentiated cells.
Biochemistry (moscow) Supplement Series A: Membrane and Cell Biology | 2016
V. P. Ivanova; Z. V. Kovaleva; E. I. Sorochinskaya; V. V. Anokhina; A. I. Krivchenko
It is shown that a tetrapeptide fragment of defensin does not alter the phospholipid composition in the membranes of CHO-K1 cells but regulates the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine (PEA), phosphatidylserine (PS), and phosphatidylinositol (PI). Incubation of the cells in the presence of this tetrapeptide resulted in modification of unsaturated fatty acid composition in the studied phospholipids. The content of monoenoic (mainly C18 : 1ω9) and/or dienoic (C18 : 2ω6) fatty acids increased, while the level of polyenoic fatty acids decreased. It was found that in the polyenoic fatty acid group of the PEA, PS and PI molecules, the ω3-/ω6-acid ratio decreased mainly due to the lower content of long-chain ω3-acids with 20 and/or 22 carbonic atoms. The possible role of this peptide in inhibition of the activity of Δ6- and Δ5-desaturases involved in the synthesis of long-chain polyenoic fatty acids, the quantitative alteration of which in phospholipids influences physicochemical parameters in cell membranes, is discussed.
Doklady Biological Sciences | 2015
V. P. Ivanova; Z. V. Kovaleva; A. I. Krivchenko
A tetrapeptide defensin fragment has been shown to stimulate the spreading of CHOK1 cells. The tetrapeptide investigated had virtually no effect on the composition of cell membrane phospholipids but participated in the regulation of the renewal of fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. Incubation of cells with the peptide resulted in a change in the composition of the unsaturated fatty acid residues in the phospholipids investigated: specifically, the content of monoenoic and/or dienoic acids increased and that of polyenoic acids decreased. The possible role of the peptide investigated (1) in the regulation of the functional activity of integrin receptors, and (2) in changes in the packing density of the phospholipid acyl chains in cell membrane microdomains, which affects the rates of integrin clustering and adhesion complex formation, is discussed.
RAD Association Journal | 2018
T. M. Grinchuk; Mariia Shilina; Z. V. Kovaleva; Nikolay Nikolsky