Zac Pujic
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zac Pujic.
Trends in Neurosciences | 2008
Duncan Mortimer; Thomas Fothergill; Zac Pujic; Linda J. Richards; Geoffrey J. Goodhill
Wiring up the nervous system depends on the precise guidance of axonal growth cones to their targets. A key mechanism underlying this guidance is chemotaxis, whereby growth cones detect and follow molecular gradients. Although recent work has uncovered many of the molecules involved in this process, the mechanisms underlying chemotactic axon guidance are still unclear. Here we compare growth cones with neutrophils and Dictyostelium discoideum, systems for which a clear conceptual framework for chemotaxis has recently emerged. This analogy suggests particular ways in which the three key steps of directional sensing, polarisation and motility might be implemented in chemotaxing growth cones.
Developmental Biology | 2003
Jarema Malicki; Hakryul Jo; Zac Pujic
Genetic screens in zebrafish identified several loci that play essential roles in the patterning of retinal architecture. Here, we show that one of them, glass onion, encodes the N-cadherin gene. The glo(m117) mutant allele contains a substitution of the Trp2 residue known for its essential role in the adhesive properties of classic cadherins. Both the glo(m117) and pac(tm101b) mutant N-cadherin alleles affect the polarity of the retinal neuroepithelial sheet and, unexpectedly, both result in cell-nonautonomous phenotypes in retinal patterning. The late onset of mutant N-cadherin phenotypes may be due to the ability of classic cadherins to substitute each others function.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Duncan Mortimer; Julia Feldner; Timothy Vaughan; Irina Vetter; Zac Pujic; William J. Rosoff; Kevin Burrage; Peter Dayan; Linda J. Richards; Geoffrey J. Goodhill
Axon guidance by molecular gradients plays a crucial role in wiring up the nervous system. However, the mechanisms axons use to detect gradients are largely unknown. We first develop a Bayesian “ideal observer” analysis of gradient detection by axons, based on the hypothesis that a principal constraint on gradient detection is intrinsic receptor binding noise. Second, from this model, we derive an equation predicting how the degree of response of an axon to a gradient should vary with gradient steepness and absolute concentration. Third, we confirm this prediction quantitatively by performing the first systematic experimental analysis of how axonal response varies with both these quantities. These experiments demonstrate a degree of sensitivity much higher than previously reported for any chemotacting system. Together, these results reveal both the quantitative constraints that must be satisfied for effective axonal guidance and the computational principles that may be used by the underlying signal transduction pathways, and allow predictions for the degree of response of axons to gradients in a wide variety of in vivo and in vitro settings.
eLife | 2016
Huyen Nguyen; Peter Dayan; Zac Pujic; Justin J. Cooper-White; Geoffrey J. Goodhill
Correct wiring is crucial for the proper functioning of the nervous system. Molecular gradients provide critical signals to guide growth cones, which are the motile tips of developing axons, to their targets. However, in vitro, growth cones trace highly stochastic trajectories, and exactly how molecular gradients bias their movement is unclear. Here, we introduce a mathematical model based on persistence, bias, and noise to describe this behaviour, constrained directly by measurements of the detailed statistics of growth cone movements in both attractive and repulsive gradients in a microfluidic device. This model provides a mathematical explanation for why average axon turning angles in gradients in vitro saturate very rapidly with time at relatively small values. This work introduces the most accurate predictive model of growth cone trajectories to date, and deepens our understanding of axon guidance events both in vitro and in vivo. DOI: http://dx.doi.org/10.7554/eLife.12248.001
Proceedings of the National Academy of Sciences of the United States of America | 2010
Duncan Mortimer; Zac Pujic; Timothy Vaughan; Andrew W. Thompson; Julia Feldner; Irina Vetter; Geoffrey J. Goodhill
Guidance of axons by molecular gradients is crucial for wiring up the developing nervous system. It often is assumed that the unique signature of such guidance is immediate and biased turning of the axon tip toward or away from the gradient. However, here we show that such turning is not required for guidance. Rather, by a combination of experimental and computational analyses, we demonstrate that growth-rate modulation is an alternative mechanism for guidance. Furthermore we show that, although both mechanisms may operate simultaneously, biased turning dominates in steep gradients, whereas growth-rate modulation may dominate in shallow gradients. These results suggest that biased axon turning is not the only method by which guidance can occur.
Methods | 2002
Jarema Malicki; Hakryul Jo; Xiangyun Wei; Monica Hsiung; Zac Pujic
Mutagenesis screens in zebrafish have uncovered several hundred mutant alleles affecting the development of the retina and established the zebrafish as one of the leading models of vertebrate eye development. In addition to forward genetic mutagenesis approaches, gene function in the zebrafish embryo is being studied using several reverse genetic techniques. Some of these rely on the overexpression of a gene product, others take advantage of antisense oligonucleotides to block function of selected loci. Here we describe these methods in the context of the developing eye.
Transplantation | 1994
Shigeru Goto; Izuru Matsumoto; Naoshi Kamada; An Bui; Takuro Saito; Michael Findlay; Zac Pujic; Peter A. Wilce
The protein products of the immediate early genes (IEG)s have been proposed to play an important role in long-term tissue plasticity such as cell repair or programmed cell death. The expression of liver IEGs was studied following liver ischemia (LI) or OLT in rats. In LI, 60 min of warm ischemia was induced in shunted rats (shunt LI group; 100% survival) and nonshunted rats (nonshunted LI group; poor survival). In OLT, donor livers were transplanted into the recipients within 1 hr (fresh liver OLT group; 100% survival) or after 24 hr of storage using University of Wisconsin solution (preserved liver OLT group; poor survival). Using both models, IEG mRNAs (c-fos and c-jun) were analyzed by Northern blot hybridization at various times before and after reperfusion. The expression of liver IEGs was not induced by warm ischemia and cold preservation alone. Reperfusion of livers following warm ischemia or cold preservation resulted in a distinctly different pattern of gene expression in viable and nonviable livers. In shunted LI and fresh liver OLT groups (viable), c-fos and c-jun mRNAs increased markedly to a peak value within 1–2 hr of reperfusion, returning to basal level by 3 hr. In nonviable livers, the level of these mRNAs was detected continuously at 3 hr of reperfusion in the nonshunted LI model and also at 6 hr after reperfusion in the preserved liver OLT group. Our data suggest that a protracted pattern of expression of c-fos and c-jun in the liver at the early stage of reperfusion might be correlated with the severity of liver transplant-related insults and subsequent graft failure.
Trends in Neurosciences | 2014
Daniel J. Sutherland; Zac Pujic; Geoffrey J. Goodhill
Guidance of axons to their targets in the developing nervous system requires a myriad of downstream signaling molecules to coordinate growth cone movement. One of the most important of these is calcium, and over the past few years many new insights have been gained into the role of calcium in axon guidance. In this review we focus on mechanisms of calcium entry into the growth cone and its downstream effects on both growth cone motility and turning. We particularly highlight the role of calcium concentrations in determining attractive versus repulsive responses to graded guidance cues, and their role in guidance by the morphogen Wnt5a.
Vision Research | 2002
Jarema Malicki; Zac Pujic; Christine Thisse; Bernard Thisse; Xiangyun Wei
The zebrafish has been established as a mainstream research system, largely due to the immense success of genetic screens. Over 2000 mutant alleles affecting zebrafishs early development have been isolated in two large-scale morphological screens and several smaller efforts. So far, over 50 mutant strains display retinal defects and many more have been shown to affect the retinotectal projection. More recently, mutant isolation and characterization have been successfully followed by candidate and positional cloning of underlying genes. To supplement forward genetic mutational analysis, several reverse genetic techniques have also been developed. These recent advances, combined with the genome project, have established the zebrafish as one of the leading models for studies of visual system development.
Experimental Neurology | 1997
Sharon Goodenough; Mark Davidson; Wenbin Chen; Alison M. Beckmann; Zac Pujic; Manabu Otsuki; Izuru Matsumoto; Peter A. Wilce
Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4 degrees C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with KA (12 mg/kg, i.p.) and kept at 4 degrees C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after KA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fos B, jun B, and egr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment (jun D). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of KA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death.