Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zach Adam is active.

Publication


Featured researches published by Zach Adam.


The Plant Cell | 2000

The Thylakoid FtsH Protease Plays a Role in the Light-Induced Turnover of the Photosystem II D1 Protein

Marika Lindahl; Torill Hundal; Amos B. Oppenheim; Zach Adam; Bertil Andersson

The photosystem II reaction center D1 protein is known to turn over frequently. This protein is prone to irreversible damage caused by reactive oxygen species that are formed in the light; the damaged, nonfunctional D1 protein is degraded and replaced by a new copy. However, the proteases responsible for D1 protein degradation remain unknown. In this study, we investigate the possible role of the FtsH protease, an ATP-dependent zinc metalloprotease, during this process. The primary light-induced cleavage product of the D1 protein, a 23-kD fragment, was found to be degraded in isolated thylakoids in the dark during a process dependent on ATP hydrolysis and divalent metal ions, suggesting the involvement of FtsH. Purified FtsH degraded the 23-kD D1 fragment present in isolated photosystem II core complexes, as well as that in thylakoid membranes depleted of endogenous FtsH. In this study, we definitively identify the chloroplast protease acting on the D1 protein during its light-induced turnover. Unlike previously identified membrane-bound substrates for FtsH in bacteria and mitochondria, the 23-kD D1 fragment represents a novel class of FtsH substrate— functionally assembled proteins that have undergone irreversible photooxidative damage and cleavage.


The Plant Cell | 2002

Rose Scent: Genomics Approach to Discovering Novel Floral Fragrance–Related Genes

Inna Guterman; Moshe Shalit; Naama Menda; Dan Piestun; Mery Dafny-Yelin; Gil Shalev; Einat Bar; Olga Davydov; Mariana Ovadis; Michal Emanuel; Jihong Wang; Zach Adam; Eran Pichersky; Efraim Lewinsohn; Dani Zamir; Alexander Vainstein; David Weiss

For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of ∼2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones. Detailed chemical analysis of volatile composition in the two cultivars, together with the identification of secondary metabolism–related genes whose expression coincides with scent production, led to the discovery of several novel flower scent–related candidate genes. The function of some of these genes, including a germacrene D synthase, was biochemically determined using an Escherichia coli expression system. This work demonstrates the advantages of using the high-throughput approaches of genomics to detail traits of interest expressed in a cultivar-specific manner in nonmodel plants.


Trends in Plant Science | 2002

Cutting edge of chloroplast proteolysis

Zach Adam; Adrian K. Clarke

Chloroplasts have a dynamic protein environment and, although proteases are presumably major contributors, the identities of these crucial regulatory proteins have only recently been revealed. There are defined proteases within each of the major chloroplast compartments: the ATP-dependent Clp and FtsH proteases in the stroma and stroma-exposed thylakoid membranes, respectively, the ATP-independent DegP proteases within the thylakoid lumen and on both sides of thylakoid membranes, and the SppA protease on the stromal side of the thylakoid. All four types are homologous to proteases characterized in bacteria, but most have many isomers in higher plants. With such diversity, the challenge is to link the mode of action of each protease to the chloroplast enzymes and regulatory proteins that it targets.


The Plant Cell | 2003

Coordinated Regulation and Complex Formation of YELLOW VARIEGATED1 and YELLOW VARIEGATED2, Chloroplastic FtsH Metalloproteases Involved in the Repair Cycle of Photosystem II in Arabidopsis Thylakoid Membranes

Wataru Sakamoto; Adi Zaltsman; Zach Adam; Yuichiro Takahashi

Arabidopsis YELLOW VARIEGATED1 (VAR1) and VAR2 are separate loci that encode similar chloroplast FtsH proteases. To date, FtsH is the best-characterized protease in thylakoid membranes involved in the turnover of photosynthetic protein complexes. It comprises a protein family that is encoded by 12 different nuclear genes in Arabidopsis. We show here that nine FtsH proteins are located in the chloroplasts. Mutations in either VAR1 or VAR2 cause typical leaf variegation and sensitivity to photoinhibition. By contrast, none of these phenotypes was observed in T-DNA insertion mutants in other ftsH genes (ftsh1, ftsh6, and ftsh8) closely related to VAR1 and VAR2. This finding suggests that VAR1 and VAR2 play a predominant role in the photosystem II repair cycle in thylakoid membranes. By generating VAR1- and VAR2-specific antibodies, we found that loss of either VAR1 or VAR2 results in the decreased accumulation of the other. Thus, the genetic nonredundancy between VAR1 and VAR2 could be attributed to their coordinated regulation at the protein level. These observations led us to examine whether VAR1 and VAR2 form a complex. Sucrose density gradient and gel filtration analyses revealed a complex of ∼400 to 450 kD, probably representing a hexamer. Furthermore, VAR1 and VAR2 were shown to coprecipitate by immunoprecipitation using VAR1- and VAR2-specific antibodies. The majority of VAR1 appears to exist as heterocomplexes with VAR2, whereas VAR2 may be present as homocomplexes as well. Based on these results, we conclude that VAR1 and VAR2 are the major components of an FtsH complex involved in the repair of photodamaged proteins in thylakoid membranes.


Journal of Biological Chemistry | 1996

Identification, Characterization, and Molecular Cloning of a Homologue of the Bacterial FtsH Protease in Chloroplasts of Higher Plants

Marika Lindahl; Sarit Tabak; Leland J. Cseke; Eran Pichersky; Bertil Andersson; Zach Adam

In an attempt to identify and characterize chloroplast proteases, we performed an immunological analysis of chloroplasts using an antibody against Escherichia coli FtsH protease, which is an ATP-dependent metalloprotease bound to the cytoplasmic membrane. A cross-reacting protein of 78 kDa was found in the thylakoid membrane of spinach, but not in the soluble stromal fraction. Alkali and high salt washes, as well as trypsin treatment of thylakoid membranes, suggest that the chloroplastic FtsH protein is integral to the membrane, with its hydrophilic portion exposed to the stroma. The protein is not bound to any photosynthetic complex and is exclusively located in the stromally exposed regions of the thylakoid membrane. Its expression is dependent on light, as it is present in green pea seedlings, but absent from etiolated ones. An Arabidopsis cDNA was isolated, and the deduced amino acid sequence demonstrated high similarity to the E. coli FtsH protein, especially in the central region of the protein, containing the ATP- and zinc-binding sites. The product of this clone was capable of import into isolated pea chloroplasts, where it was processed to its mature form and targeted to the thylakoid membrane. The trans-bilayer orientation and lateral location of the FtsH protein in the thylakoid membrane suggest its involvement in the degradation of both soluble stromal proteins and newly inserted or turning-over thylakoid proteins.


The Plant Cell | 2007

The Thylakoid Lumen Protease Deg1 Is Involved in the Repair of Photosystem II from Photoinhibition in Arabidopsis

Einat Kapri-Pardes; Leah Naveh; Zach Adam

Deg1 is a Ser protease peripherally attached to the lumenal side of the thylakoid membrane. Its physiological function is unknown, but its localization makes it a suitable candidate for participation in photoinhibition repair by degradation of the photosystem II reaction center protein D1. We transformed Arabidopsis thaliana with an RNA interference construct and obtained plants with reduced levels of Deg1. These plants were smaller than wild-type plants, flowered earlier, were more sensitive to photoinhibition, and accumulated more of the D1 protein, probably in an inactive form. Two C-terminal degradation products of the D1 protein, of 16 and 5.2 kD, accumulated at lower levels compared with the wild type. Moreover, addition of recombinant Deg1 to inside-out thylakoid membranes isolated from the mutant could induce the formation of the 5.2-kD D1 C-terminal fragment, whereas the unrelated proteases trypsin and thermolysin could not. Immunoblot analysis revealed that mutants containing less Deg1 also contain less FtsH protease, and FtsH mutants contain less Deg1. These results suggest that Deg1 cooperates with the stroma-exposed proteases FtsH and Deg2 in degrading D1 protein during repair from photoinhibition by cleaving lumen-exposed regions of the protein. In addition, they suggest that accumulation of Deg1 and FtsH proteases may be coordinated.


Plant Physiology | 2003

Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/Citronellol acetyltransferase in developing rose petals.

Moshe Shalit; Inna Guterman; Hanne Volpin; Einat Bar; Tal Tamari; Naama Menda; Zach Adam; Dani Zamir; Alexander Vainstein; David Weiss; Eran Pichersky; Efraim Lewinsohn

The aroma of roses (Rosa hybrida) is due to more than 400 volatile compounds including terpenes, esters, and phenolic derivatives. 2-Phenylethyl acetate, cis-3-hexenyl acetate, geranyl acetate, and citronellyl acetate were identified as the main volatile esters emitted by the flowers of the scented rose var. “Fragrant Cloud.” Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. Screening for genes similar to known plant alcohol acetyltransferases in a rose expressed sequence tag database yielded a cDNA (RhAAT1) encoding a protein with high similarity to several members of the BAHD family of acyltransferases. This cDNA was functionally expressed inEscherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. The RhAAT1 protein accepted other alcohols such as citronellol and 1-octanol as substrates, but 2-phenylethyl alcohol andcis-3-hexen-1-ol were poor substrates, suggesting that additional acetyltransferases are present in rose petals. The RhAAT1 protein is a polypeptide of 458 amino acids, with a calculated molecular mass of 51.8 kD, pI of 5.45, and is active as a monomer. TheRhAAT1 gene was expressed exclusively in floral tissue with maximum transcript levels occurring at stage 4 of flower development, where scent emission is at its peak.


Plant Physiology | 2002

O-Methyltransferases Involved in the Biosynthesis of Volatile Phenolic Derivatives in Rose Petals

Noa Lavid; Jihong Wang; Moshe Shalit; Inna Guterman; Einat Bar; Till Beuerle; Naama Menda; Sharoni Shafir; Dani Zamir; Zach Adam; Alexander Vainstein; David Weiss; Eran Pichersky; Efraim Lewinsohn

Rose (Rosa hybrida) flowers produce and emit a diverse array of volatiles, characteristic to their unique scent. One of the most prominent compounds in the floral volatiles of many rose varieties is the methoxylated phenolic derivative 3,5-dimethoxytoluene (orcinol dimethyl ether). Cell-free extracts derived from developing rose petals displayedO-methyltransferase (OMT) activities toward several phenolic substrates, including 3,5-dihydroxytoluene (orcinol), 3-methoxy,5-hydroxytoluene (orcinol monomethyl ether), 1-methoxy, 2-hydroxy benezene (guaiacol), and eugenol. The activity was most prominent in rose cv Golden Gate, a variety that produces relatively high levels of orcinol dimethyl ether, as compared with rose cv Fragrant Cloud, an otherwise scented variety but which emits almost no orcinol dimethyl ether. Using a functional genomics approach, we have identified and characterized two closely related cDNAs from a rose petal library that each encode a protein capable of methylating the penultimate and immediate precursors (orcinol and orcinol monomethyl ether, respectively) to give the final orcinol dimethyl ether product. The enzymes, designated orcinol OMTs (OOMT1 and OOMT2), are closely related to other plant methyltransferases whose substrates range from isoflavones to phenylpropenes. The peak in the levels ofOOMT1 and OOMT2 transcripts in the flowers coincides with peak OMT activity and with the emission of orcinol dimethyl ether.


The Plant Cell | 1997

Light-stimulated degradation of an unassembled Rieske FeS protein by a thylakoid-bound protease: the possible role of the FtsH protease.

Oren Ostersetzer; Zach Adam

Unassembled subunits of the cytochrome b6f complex as well as components of other unassembled chloroplastic complexes are rapidly degraded within the organelle. However, the mechanisms involved in these proteolytic processes are obscure. When the Rieske FeS protein (RISP) is imported into isolated chloroplasts in vitro, some of the protein does not property assemble with the cytochrome complex, as determined by its sensitivity to exogenous protease. When assayed in intact, lysed, or fractionated chloroplasts, the imported RISP was found to be sensitive to endogenous proteases as well. The activity responsible for degradation of the unassembled protein was localized to the thylakoid membrane and characterized as a metalloprotease requiring zinc ions for its activity. The degradation rate was stimulated by light, but no involvement of ATP or redox control was observed. Instead, when the RISP that was attached to thylakoid membranes was first illuminated on ice, degradation proceeded in either light or darkness at equal rates suggesting a light-induced conformational change making the protein prone to degradation. Antibodies raised against native FtsH, a bacterial, membrane-bound, ATP-dependent, zinc-stimulated protease, effectively inhibited degradation of the unassembled RISP, suggesting a role for the chloroplastic FtsH in this process.


The Plant Cell | 2005

Two Types of FtsH Protease Subunits Are Required for Chloroplast Biogenesis and Photosystem II Repair in Arabidopsis

Adi Zaltsman; Naomi Ori; Zach Adam

FtsH protease is important in chloroplast biogenesis and thylakoid maintenance. Although bacteria contain only one essential FTSH gene, multiple genes exist in cyanobacteria and higher plants. However, the functional significance of FTSH multiplication in plants is unclear. We hypothesized that some FTSH genes may be redundant. To test this hypothesis, we generated double mutant combinations among the different FTSH genes in Arabidopsis thaliana. A double mutant of ftsh1 and ftsh8 showed no obvious phenotypic alterations, and disruption of either FTSH1 or FTSH5 enhanced the phenotype of the ftsh2 mutant. Unexpectedly, new phenotypes were recovered from crosses between ftsh2 and ftsh8 and between ftsh5 and ftsh1, including albinism, heterotrophy, disruption of flowering, and severely reduced male fertility. These results suggest that the duplicated genes, FTSH1 and FTSH5 (subunit type A) and FTSH2 and FTSH8 (subunit type B), are redundant. Furthermore, they reveal that the presence of two types of subunits is essential for complex formation, photosystem II repair, and chloroplast biogenesis.

Collaboration


Dive into the Zach Adam's collaboration.

Top Co-Authors

Avatar

Alexander Vainstein

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Oren Ostersetzer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dani Zamir

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

David Weiss

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amihud Borochov

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Moshe Shalit

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shimon Mayak

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ziv Reich

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Marika Lindahl

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge