Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zacharias Frontistis is active.

Publication


Featured researches published by Zacharias Frontistis.


Journal of Environmental Management | 2012

Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis

Despina Dimitrakopoulou; Irene Rethemiotaki; Zacharias Frontistis; Nikolaos P. Xekoukoulotakis; Danae Venieri; Dionissios Mantzavinos

The UV-A/TiO(2) photocatalytic decomposition of amoxicillin (AMX) in aqueous suspensions was investigated. Experiments were performed at antibiotic concentrations between 2.5 and 30 mg/L, eight commercially available TiO(2) catalysts at loadings between 100 and 750 mg/L, acidic or near-neutral conditions (pH 5 or 7.5) and two different matrices (ultrapure water and secondary treated effluent) at a photon flux of 8 × 10(-4) E/(L min). Of the various catalysts tested, Degussa P25 was highly active, i.e. complete AMX degradation and 93% mineralization could be achieved after 25 and 90 min of reaction, respectively at 10 mg/L AMX and 250 mg/L titania. In general, mineralization was slower than degradation due to the formation of stable transformation by-products. For the range of concentrations studied, initial degradation rates can be approached by a Langmuir-Hinshelwood kinetic model, while the reaction order with respect to AMX shifts from first to zeroth as initial concentration increases from 2.5 to 5 mg/L to higher values. Degradation in treated effluent was partly impeded compared to pure water due to the inherent presence of organic and inorganic constituents that compete for hydroxyl radicals. Although increasing solution pH from 5 to 7.5 had no effect on degradation, it retarded mineralization. The antibiotic activity of AMX prior to and after photocatalytic degradation was tested to three reference bacterial strains, namely Escherichia coli (ATCC 23716), Klebsiella pneumoniae (NCTC 5056) and Enterococcus faecalis (ATCC 14506). The first two were found to be highly resistant at AMX concentrations up to 25 mg/L, while the latter could partly be inactivated at lower AMX concentrations (i.e. 10 mg/L) and/or in the presence of photocatalytic by-products.


Water Research | 2011

Electrochemical enhancement of solar photocatalysis: degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films.

Zacharias Frontistis; Vasileia M. Daskalaki; Alexandros Katsaounis; I. Poulios; Dionissios Mantzavinos

The photoelectrocatalytic oxidation over immobilized Ti/TiO(2) films in the presence of simulated solar light was investigated for the degradation of bisphenol-A (BPA) in water. The catalyst, consisting of 75:25 anatase:rutile, was prepared by a sol-gel method and characterized by cyclic voltammetry, X-ray diffraction and scanning electron microscopy. Experiments were conducted to assess the effect of applied current (0.02-0.32 mA/cm(2)), TiO(2) loading (1.3-9.2 mg), BPA concentration (120-820 μg/L), initial solution pH (1 and 7.5) and the aqueous matrix (pure water and treated effluent) on BPA photoelectrocatalytic degradation which was monitored by high performance liquid chromatography equipped with a fluorescence detector. The reaction was favored at anodic currents up to 0.04 mA/cm(2) and lower substrate concentrations, but it was hindered by the presence of residual organic matter and radical scavengers (e.g. bicarbonates) in treated effluents. Moreover, a pseudo-first order kinetic model could fit the experimental data well with the apparent reaction constant taking values between 2.9 and 32.4 10(-3)/min. The degradation of BPA by pure photocatalysis or electrochemical oxidation alone was also studied leading to partial substrate removal. In all cases, the contribution of applied potential to photocatalytic degradation was synergistic with the photocatalytic efficiency increasing between 24% and 97% possibly due to a more efficient separation and utilization of the photogenerated charge carriers. The effect of photoelectrocatalysis on the ecotoxic and estrogenic properties of BPA was also evaluated measuring the bioluminescence inhibition of Vibrio fischeri and performing the yeast estrogen screening assay, respectively.


Ultrasonics Sonochemistry | 2012

Sonodegradation of 17α-ethynylestradiol in environmentally relevant matrices: Laboratory-scale kinetic studies

Zacharias Frontistis; Dionissios Mantzavinos

The sonochemical degradation of 17α-ethynylestradiol (EE2) in secondary treated effluents was investigated. Ultrasound irradiation was provided by a horn-type sonicator operating at 80 kHz. The effect of various operating conditions such as estrogen concentration (25-160 μg/L), power density (18-46 W/L), liquid bulk temperature (15-60 °C), gas sparging (air, oxygen, and helium), solution pH (3 and 7.8), as well as the addition of radical promoters (hydrogen peroxide) or catalysts (TiO2 and Fe2+) on degradation kinetics was evaluated. Changes in estrogen concentration were followed by high performance liquid chromatography and the yeast estrogen screening (YES) assay. EE2 degradation in the range 25-110 μg/L follows first order kinetics in regard to its concentration, while lower order kinetics occur at higher concentrations. The reaction rate increases linearly with applied power and decreases exponentially with temperature at the conditions in question. Continuous sparging of air or oxygen has little effect on the kinetics relative to air-equilibrated conditions, while helium has a marginally positive effect. The inorganic and organic contents of the wastewater matrix appear to promote degradation at inherent conditions in comparison to experiments in ultrapure water. Nevertheless, the addition of H2O2 (8.6 and 86 mg/L), Fe2+ (2.5-25 mg/L) or TiO2 (50-2000 mg/L) has no or, in some cases, adverse effect on kinetics.


Water Research | 2015

Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation

I. Michael-Kordatou; M. Iacovou; Zacharias Frontistis; Evroula Hapeshi; Dionysios D. Dionysiou; Despo Fatta-Kassinos

This study evaluates the feasibility of UV-C-driven advanced oxidation process induced by sulfate radicals SO4(.)- in degrading erythromycin (ERY) in secondary treated wastewater. The results revealed that 10 mg L(-1) of sodium persulfate (SPS) can result in rapid and complete antibiotic degradation within 90 min of irradiation, while ERY decay exhibited a pseudo-first-order kinetics pattern under the different experimental conditions applied. ERY degradation rate was strongly affected by the chemical composition of the aqueous matrix and it decreased in the order of: ultrapure water (kapp = 0.55 min(-1)) > bottled water (kapp = 0.26 min(-1)) > humic acid solution (kapp = 0.05 min(-1)) > wastewater effluents (kapp = 0.03 min(-1)). Inherent pH conditions (i.e. pH 8) yielded an increased ERY degradation rate, compared to that observed at pH 3 and 5. The contribution of hydroxyl and sulfate radicals (HO. and SO4(.)-) on ERY degradation was found to be ca. 37% and 63%, respectively. Seven transformation products (TPs) were tentatively elucidated during ERY oxidation, with the 14-membered lactone ring of the ERY molecule being intact in all cases. The observed phytotoxicity against the tested plant species can potentially be attributed to the dissolved effluent organic matter (dEfOM) present in wastewater effluents and its associated-oxidation products and not to the TPs generated from the oxidation of ERY. This study evidences the potential use of the UV-C/SPS process in producing a final treated effluent with lower phytotoxicity (<10%) compared to the untreated wastewater. Finally, under the optimum experimental conditions, the UV-C/SPS process resulted in total inactivation of ERY-resistant Escherichia coli within 90 min.


Ultrasonics Sonochemistry | 2016

Sonochemical degradation of ethyl paraben in environmental samples: Statistically important parameters determining kinetics, by-products and pathways.

Costas Papadopoulos; Zacharias Frontistis; Maria Antonopoulou; Danae Venieri; Ioannis Konstantinou; Dionissios Mantzavinos

The sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20 kHz and liquid bulk temperature of 30 °C in the following range of experimental conditions: EP concentration 250-1250 μg/L, ultrasound (US) density 20-60 W/L, reaction time up to 120 min, initial pH 3-8 and sodium persulfate 0-100mg/L, either in ultrapure water or secondary treated wastewater. A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration)×(US density), (EP concentration)×(pHo) and (EP concentration)×(time). Experiments at an increased EP concentration of 3.5mg/L were also performed to identify degradation by-products. LC-TOF-MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound.


Journal of Hazardous Materials | 2017

Photodegradation of ethyl paraben using simulated solar radiation and Ag3PO4 photocatalyst

Zacharias Frontistis; Maria Antonopoulou; Athanasia Petala; Danae Venieri; Ioannis Konstantinou; Dimitris I. Kondarides; Dionissios Mantzavinos

In this work, the solar light-induced photocatalytic degradation of ethyl paraben (EP), a representative of the parabens family, was studied using silver orthophosphate, a relatively new photocatalytic material. The catalyst was synthesized by a precipitation method and had a primary crystallite size of ca 70nm, specific surface area of 1.4m2/g and a bandgap of 2.4eV. A factorial design methodology was implemented to evaluate the importance of EP concentration (500-1500μg/L), catalyst concentration (100-500mg/L), reaction time (4-30min), water matrix (pure water or 10mg/L humic acid) and initial solution pH (3-9) on EP removal. All individual effects but solution pH were statistically significant and so were the second-order interactions of EP concentration with reaction time or catalyst concentration. The water matrix effect was negative (all other effects were positive) signifying the role of humic acid as scavenger of the oxidant species. Liquid chromatography-time of flight mass spectrometry revealed the formation of methyl paraben, 4-hydroxybenzoic acid, benzoic acid and phenol as primary transformation by-products; these are formed through dealkylation and decarboxylation reactions initiated primarily by the photogenerated holes. Estrogenicity assays showed that methyl paraben was more estrogenic than EP; however, parabens are slightly estrogenic compared to 17β-estradiol.


Journal of Hazardous Materials | 2015

Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products.

Iosif Tantis; Leda G. Bousiakou; Zacharias Frontistis; Dionissios Mantzavinos; Ioannis Konstantinou; Maria Antonopoulou; George-Albert Karikas; Panagiotis Lianos

Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.


Comprehensive Analytical Chemistry | 2013

Removal of Pharmaceuticals from Environmentally Relevant Matrices by Advanced Oxidation Processes (AOPs)

I. Michael; Zacharias Frontistis; Despo Fatta-Kassinos

Abstract Many scientific reports have shown that elimination of pharmaceuticals from urban wastewater treatment plants is often incomplete, and therefore, it has become evident that application of more advanced technologies may be crucial for the fulfillment of the quality requirements for the disposal of municipal wastewater. Among the advanced technologies that may be used to remove these pollutants, advanced oxidation processes (AOPs) are the most frequently used technologies that have been proven efficient in removing trace concentrations of pharmaceuticals. The aim of this chapter is to review the removal of various pharmaceuticals in environmentally relevant matrices during the application of different AOPs and determine the key parameters that affect the process efficiency. For this purpose and wherever possible, data on the removal of pharmaceuticals along with information on the main treatment are provided for each of the studies presented herein, so as to be able to extract solid conclusions with regard to the varying experimental conditions applied. The removal of pharmaceuticals varies among the different AOPs and is mainly dependent on the process mechanisms, the water matrix composition, and the operating conditions of the treatment systems.


International Journal of Photoenergy | 2013

Solar Photocatalytic Degradation of Bisphenol A on Immobilized ZnO or TiO2

Andreas Zacharakis; Efthalia Chatzisymeon; Vassilios Binas; Zacharias Frontistis; Danae Venieri; Dionissios Mantzavinos

The removal of bisphenol A (BPA) under simulated solar irradiation and in the presence of either TiO2 or ZnO catalysts immobilized onto glass plates was investigated. The effect of various operating conditions on degradation was assessed including the amount of the immobilized catalyst (36.1–150.7 mg/cm2 for TiO2 and 0.5–6.8 mg/cm2 for ZnO), initial BPA concentration (50–200 μg/L), treatment time (up to 90 min), water matrix (wastewater, drinking water, and pure water), the addition of H2O2 (25–100 mg/L), and the presence of other endocrine disruptors in the reaction mixture. Specifically, it was observed that increasing the amount of immobilized catalyst increases BPA conversion and so does the addition of H2O2 up to 100 mg/L. Moreover, BPA degradation follows first-order reaction kinetics indicating that the final removal is not practically affected by the initial BPA concentration. Degradation in wastewater is slower than that in pure water up to five times, implying the scavenging behavior of effluent’s constituents against hydroxyl radicals. Finally, the presence of other endocrine disruptors, such as 17α-ethynylestradiol, spiked in the reaction mixture at low concentrations usually found in environmental samples (i.e., 100 μg/L), neither affects BPA degradation nor alters its kinetics to a considerable extent.


Journal of Hazardous Materials | 2017

On the capacity of ozonation to remove antimicrobial compounds, resistant bacteria and toxicity from urban wastewater effluents.

I. Michael-Kordatou; R. Andreou; M. Iacovou; Zacharias Frontistis; Evroula Hapeshi; Costas Michael; Despo Fatta-Kassinos

The degradation of erythromycin (ERY) and ethylparaben (EtP) in urban wastewater effluents at low concentration level during ozonation was investigated under different experimental conditions. Both substrates were rapidly eliminated within 2min at low ozone dose of 0.3mgL-1 and the experimental data were well fitted in the pseudo-first-order kinetic model. The ratio of HO- and O3-exposure (Rct) at the inherent pH was found to be 1.9×10-8. The degradation of ERY and EtP was pronounced at pH 8 compared to acidic pH conditions, while the degradation rate of both substrates was found to be matrix-depended. It was also shown that both O3- and HO-mediated pathways are involved in the degradation of EtP, whereas the saturated-rich structure of ERY renders it O3-recalcitrant. Under the optimum O3 dose, the BrO3- concentration was found to be lower than 10μgL-1. Five and fifteen transformation products were elucidated during ERY and EtP oxidation, respectively. The root and shoot inhibition can be attributed to the oxidation products formed upon dissolved effluent organic matter transformation. Escherichia coli harbouring resistance to ERY survived ozonation better than EtP-resistant E. coli. However, neither ERY- nor EtP-resistant E. coli were detected after 15min of ozonation.

Collaboration


Dive into the Zacharias Frontistis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danae Venieri

Technical University of Crete

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge