Zacharias Kohl
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zacharias Kohl.
European Journal of Neuroscience | 2011
Beate Winner; Zacharias Kohl; Fred H. Gage
The generation and cell death of newly generated cells have critical roles in brain development and maintenance in the embryonic and adult brain. Alterations in these processes are also seen in neurodegenerative diseases. Genes that are key players in neurodegenerative diseases (α‐synuclein, presenilin‐1, tau, huntingtin) are also physiologically involved in modulating brain plasticity. Interestingly, in some neurodegenerative diseases, the specific alterations in neurogenic areas such as the dentate gyrus and subventricular zone/olfactory bulb system parallel the early or premotor symptoms that are seen in the early stages of these diseases, such as depression, anxiety or olfactory dysfunction. We will review the modulation of neurogenesis in animal models and human brains of Parkinson’s disease, Huntington’s disease and Alzheimer’s disease.
PLOS ONE | 2013
Jochen Klucken; Jens Barth; Patrick Kugler; Johannes C. M. Schlachetzki; Thore Henze; Franz Marxreiter; Zacharias Kohl; Ralph Steidl; Joachim Hornegger; Bjoern M. Eskofier; Juergen Winkler
Motor impairments are the prerequisite for the diagnosis in Parkinsons disease (PD). The cardinal symptoms (bradykinesia, rigor, tremor, and postural instability) are used for disease staging and assessment of progression. They serve as primary outcome measures for clinical studies aiming at symptomatic and disease modifying interventions. One major caveat of clinical scores such as the Unified Parkinson Disease Rating Scale (UPDRS) or Hoehn&Yahr (H&Y) staging is its rater and time-of-assessment dependency. Thus, we aimed to objectively and automatically classify specific stages and motor signs in PD using a mobile, biosensor based Embedded Gait Analysis using Intelligent Technology (eGaIT). eGaIT consist of accelerometers and gyroscopes attached to shoes that record motion signals during standardized gait and leg function. From sensor signals 694 features were calculated and pattern recognition algorithms were applied to classify PD, H&Y stages, and motor signs correlating to the UPDRS-III motor score in a training cohort of 50 PD patients and 42 age matched controls. Classification results were confirmed in a second independent validation cohort (42 patients, 39 controls). eGaIT was able to successfully distinguish PD patients from controls with an overall classification rate of 81%. Classification accuracy increased with higher levels of motor impairment (91% for more severely affected patients) or more advanced stages of PD (91% for H&Y III patients compared to controls), supporting the PD-specific type of analysis by eGaIT. In addition, eGaIT was able to classify different H&Y stages, or different levels of motor impairment (UPDRS-III). In conclusion, eGaIT as an unbiased, mobile, and automated assessment tool is able to identify PD patients and characterize their motor impairment. It may serve as a complementary mean for the daily clinical workup and support therapeutic decisions throughout the course of the disease.
Brain Research | 2007
Zacharias Kohl; Mahesh Kandasamy; Beate Winner; Robert Aigner; Claudia Gross; Sebastien Couillard-Despres; Ulrich Bogdahn; Ludwig Aigner; Jürgen Winkler
Huntingtons disease (HD) is an autosomal dominant neurodegenerative disorder linked to a mutation in the huntingtin gene leading to protein aggregation in neurons. The generation of new neurons in neurogenic regions, such as the subventricular zone of the lateral ventricle and the dentate gyrus of the hippocampus, is affected by these aggregation processes. In particular, hippocampal neurogenesis is reduced in the R6/2 transgenic mouse model of HD. Since physical activity stimulates adult hippocampal neurogenesis, we examined whether running is capable to rescue the impaired hippocampal neurogenesis in R6/2 mice. Proliferation of hippocampal cells measured by proliferating cell nuclear antigen (PCNA) marker was reduced in R6/2 animals by 64% compared to wild type mice. Accordingly, newly generated neurons labeled with doublecortin (DCX) were diminished by 60% in the hippocampus of R6/2 mice. Furthermore, the number of newly generated mature neurons was decreased by 76%. Within the hippocampus of wild type animals, a four-week running period resulted in a doubling of PCNA-, DCX-, and bromo-deoxyuridine (BrdU)-labeled cells. However, physical exercise failed to stimulate proliferation and survival of newly generated neurons in R6/2 transgenic mouse model of HD. These findings suggest that mutant huntingtin alters the hippocampal microenvironment thus resulting in an impaired neurogenesis. Importantly, this adverse microenvironment impeded neurogenesis upregulation such as induced by physical exercise. Future studies need to decipher the molecular pathways involved in repressing the generation of new neurons after physical activity in huntingtin transgenic rodents.
European Journal of Neuroscience | 2012
Zacharias Kohl; Beate Winner; Kiren Ubhi; Edward Rockenstein; Michael Mante; Martina Münch; Carolee Barlow; Todd Carter; Eliezer Masliah; Jürgen Winkler
The accumulation of alpha‐synuclein in Lewy bodies and Lewy neurites of different neuronal populations is one of the neuropathological hallmarks in Parkinson disease (PD). Overexpression of human wildtype or mutant alpha‐synuclein affects the generation of new neurons in the adult dentate gyrus (DG) of the hippocampus in models of PD. Hippocampal dysfunction with reduced neurogenesis plays an important role in the pathogenesis of depression, an important non‐motor symptom in PD. Moreover, effective antidepressant treatment is still an unmet need in PD. The present study explored if impaired hippocampal neurogenesis in the A53T transgenic animal model of PD may be restored by chronic oral application of the selective serotonin reuptake inhibitor (SSRI) fluoxetine. First, we determined the expression pattern of transgenic mutant A53T synuclein in developing DG neurons and showed early expression of the transgene linked to a severely impaired neurogenesis. After chronic fluoxetine treatment we observed an increased adult neurogenesis in the hippocampus of more than threefold in treated A53T mice compared with controls. The pro‐neurogenic effect of chronic fluoxetine application is predominantly related to an increased proliferation of neural precursor cells in the DG, and to a lesser extent by induction of differentiation into mature neurons. Analysis of the underlying mechanisms revealed an induction of brain‐derived and glial cell‐derived neurotrophic factor levels as a result of fluoxetine treatment. This study underlines the large potential of SSRI‐dependent mechanisms to stimulate adult hippocampal neurogenesis in alpha‐synuclein models and may lead to novel means to improve neuropsychiatric symptoms in PD.
Journal of Neuropathology and Experimental Neurology | 2010
Mahesh Kandasamy; Sebastien Couillard-Despres; Kerstin Raber; Michael Stephan; Bernadette Lehner; Beate Winner; Zacharias Kohl; Francisco J. Rivera; Huu Phuc Nguyen; Olaf Riess; Ulrich Bogdahn; Jürgen Winkler; Stephan von Hörsten; Ludwig Aigner
Cellular proliferation, differentiation, integration, and survival within the adult neural stem cell niche are altered under pathological conditions, but the molecular cues regulating the biology of this niche are mostly unknown. We examined the hippocampal neural stem cell niche in a transgenic rat model of Huntington disease. In this model, progressive cognitive deficits develop at the age of 9months, suggesting possible hippocampal dysfunction. We found a disease-associated progressive decline in hippocampal progenitor cell proliferation accompanied by an expansion of the pool of 5-bromo-2-deoxyuridine label-retaining Sox-2-positive quiescent stem cells in the transgenic animals. Increments in quiescent stem cells occurred at the expense of cAMP-responsive element-binding protein-mediated neuronal differentiation and survival. Because elevated levels of transforming growth factor-&bgr;1 (TGF-&bgr;1) impair neural progenitor proliferation, we investigated hippocampal TGF-&bgr; signaling and determined that TGF-&bgr;1 induces the neural progenitors to exit the cell cycle. Although phospho-Smad2, an effector of TGF-&bgr; signaling, is normally absent in subgranular stem cells, it accumulated progressively in Sox2/glial fibrillary acidic protein-expressing cells of the subgranular zone in the transgenic rats. These results indicate that alterations in neurogenesis in transgenic Huntington disease rats occur in successive phases that are associated with increasing TGF-&bgr; signaling. Thus, TGF-&bgr;1 signaling seems to be a crucial modulator of neurogenesis in Huntington disease and may represent a target for future therapy.
Brain | 2013
Silke Nuber; Florian Harmuth; Zacharias Kohl; Anthony Adame; Margaritha Trejo; Kai Schönig; Frank Zimmermann; Claudia Bauer; Nicolas Casadei; Christiane Giel; Carsten Calaminus; Bernd J. Pichler; Poul Henning Jensen; Christian P. Müller; Davide Amato; Johannes Kornhuber; Peter Teismann; Hodaka Yamakado; Ryosuke Takahashi; Juergen Winkler; Eliezer Masliah; Olaf Riess
Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinsons disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinsons disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology.
BMC Neuroscience | 2010
Zacharias Kohl; Martin Regensburger; Robert Aigner; Mahesh Kandasamy; Beate Winner; Ludwig Aigner; Jürgen Winkler
BackgroundHuntingtons disease (HD) is an autosomal dominant neurodegenerative disorder linked to expanded CAG-triplet nucleotide repeats within the huntingtin gene. Intracellular huntingtin aggregates are present in neurons of distinct brain areas, among them regions of adult neurogenesis including the hippocampus and the subventricular zone/olfactory bulb system. Previously, reduced hippocampal neurogenesis has been detected in transgenic rodent models of HD. Therefore, we hypothesized that mutant huntingtin also affects newly generated neurons derived from the subventricular zone of adult R6/2 HD mice.ResultsWe observed a redirection of immature neuroblasts towards the striatum, however failed to detect new mature neurons. We further analyzed adult neurogenesis in the granular cell layer and the glomerular layer of the olfactory bulb, the physiological target region of subventricular zone-derived neuroblasts. Using bromodeoxyuridine to label proliferating cells, we observed in both neurogenic regions of the olfactory bulb a reduction in newly generated neurons.ConclusionThese findings suggest that the striatal environment, severely affected in R6/2 mice, is capable of attracting neuroblasts, however this region fails to provide sufficient signals for neuronal maturation. Moreover, in transgenic R6/2 animals, the hostile huntingtin-associated microenvironment in the olfactory bulb interferes with the survival and integration of new mature neurons. Taken together, endogenous cell repair strategies in HD may require additional factors for the differentiation and survival of newly generated neurons both in neurogenic and non-neurogenic regions.
Human Molecular Genetics | 2014
Steven Havlicek; Zacharias Kohl; Himanshu K. Mishra; Iryna Prots; Esther Eberhardt; Naime Denguir; Holger Wend; Sonja Plötz; Leah Boyer; Maria C. Marchetto; Stefan Aigner; Heinrich Sticht; Teja W. Groemer; Ute Hehr; Angelika Lampert; Ursula Schlötzer-Schrehardt; Jürgen Winkler; Fred H. Gage; Beate Winner
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of motorneuron diseases characterized by progressive spasticity and paresis of the lower limbs. Mutations in Spastic Gait 4 (SPG4), encoding spastin, are the most frequent cause of HSP. To understand how mutations in SPG4 affect human neurons, we generated human induced pluripotent stem cells (hiPSCs) from fibroblasts of two patients carrying a c.1684C>T nonsense mutation and from two controls. These SPG4 and control hiPSCs were able to differentiate into neurons and glia at comparable efficiency. All known spastin isoforms were reduced in SPG4 neuronal cells. The complexity of SPG4 neurites was decreased, which was paralleled by an imbalance of axonal transport with less retrograde movement. Prominent neurite swellings with disrupted microtubules were present in SPG4 neurons at an ultrastructural level. While some of these swellings contain acetylated and detyrosinated tubulin, these tubulin modifications were unchanged in total cell lysates of SPG4 neurons. Upregulation of another microtubule-severing protein, p60 katanin, may partially compensate for microtubuli dynamics in SPG4 neurons. Overexpression of the M1 or M87 spastin isoforms restored neurite length, branching, numbers of primary neurites and reduced swellings in SPG4 neuronal cells. We conclude that neurite complexity and maintenance in HSP patient-derived neurons are critically sensitive to spastin gene dosage. Our data show that elevation of single spastin isoform levels is sufficient to restore neurite complexity and reduce neurite swellings in patient cells. Furthermore, our human model offers an ideal platform for pharmacological screenings with the goal to restore physiological spastin levels in SPG4 patients.
European Journal of Human Genetics | 2010
Ulf Edener; Janine Wöllner; Ute Hehr; Zacharias Kohl; Stefan Schilling; Friedmar Kreuz; Peter Bauer; Veronica Bernard; Gabriele Gillessen-Kaesbach; Christine Zühlke
Autosomal dominantly inherited spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative disorders primarily affecting the cerebellum. Genetically, 26 different loci have been identified so far, although the corresponding gene has not yet been determined for 10 of them. Recently, mutations in the ATPase family gene 3-like 2 gene were presented to cause SCA type 28. To define the frequency of SCA28 mutations, we performed molecular genetic analyses in 140 unrelated familial cases with ataxia. Among other variations, we found a novel missense mutation at an evolutionarily conserved amino-acid position using a single-strand conformation polymorphism approach, followed by DNA sequencing. This amino-acid exchange p.E700K was detected in a four-generation German family and was not observed in a survey of 400 chromosomes from healthy control individuals.
Annals of Neurology | 2016
Rebecca Schüle; Sarah Wiethoff; Peter Martus; Kathrin N. Karle; Susanne Otto; Stephan Klebe; Sven Klimpe; Constanze Gallenmüller; Delia Kurzwelly; Dorothea Henkel; Florian Rimmele; Henning Stolze; Zacharias Kohl; Jan Kassubek; Thomas Klockgether; Stefan Vielhaber; Christoph Kamm; Thomas Klopstock; Peter Bauer; Stephan Züchner; Inga Liepelt-Scarfone; Ludger Schöls
Hereditary spastic paraplegias (HSPs) are genetically driven disorders with the hallmark of progressive spastic gait disturbance. To investigate the phenotypic spectrum, prognostic factors, and genotype‐specific differences, we analyzed baseline data from a continuous, prospective cohort.