Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zachary Favors is active.

Publication


Featured researches published by Zachary Favors.


Scientific Reports | 2015

Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors

Wei Wang; Shirui Guo; Ilkeun Lee; Kazi Ahmed; Jiebin Zhong; Zachary Favors; Mihrimah Ozkan; Cengiz S. Ozkan

In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.


Scientific Reports | 2015

Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries

Zachary Favors; Wei Wang; Hamed Hosseini Bay; Zafer Mutlu; Kazi Ahmed; Chueh Liu; Mihrimah Ozkan; Cengiz S. Ozkan

Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO2 source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg−1 at 2 Ag−1 after 1000 cycles.


Scientific Reports | 2015

Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries

Zachary Favors; Wei Wang; Hamed Hosseini Bay; Aaron George; Mihrimah Ozkan; Cengiz S. Ozkan

Herein, SiO2 nanotubes have been fabricated via a facile two step hard-template growth method and evaluated as an anode for Li-ion batteries. SiO2 nanotubes exhibit a highly stable reversible capacity of 1266 mAhg−1 after 100 cycles with negligible capacity fading. SiO2 NT anodes experience a capacity increase throughout the first 80 cycles through Si phase growth via SiO2 reduction. The hollow morphology of the SiO2 nanotubes accommodates the large volume expansion experienced by Si-based anodes during lithiation and promotes preservation of the solid electrolyte interphase layer. The thin walls of the SiO2 nanotubes allow for effective reduction in Li-ion diffusion path distance and, thus, afford a favorable rate cyclability. The high aspect ratio character of these nanotubes allow for a relatively scalable fabrication method of nanoscale SiO2-based anodes.


Scientific Reports | 2014

Stable Cycling of SiO 2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries

Zachary Favors; Wei Wang; Hamed Hosseini Bay; Aaron George; Mihrimah Ozkan; Cengiz S. Ozkan

Herein, SiO2 nanotubes have been fabricated via a facile two step hard-template growth method and evaluated as an anode for Li-ion batteries. SiO2 nanotubes exhibit a highly stable reversible capacity of 1266 mAhg−1 after 100 cycles with negligible capacity fading. SiO2 NT anodes experience a capacity increase throughout the first 80 cycles through Si phase growth via SiO2 reduction. The hollow morphology of the SiO2 nanotubes accommodates the large volume expansion experienced by Si-based anodes during lithiation and promotes preservation of the solid electrolyte interphase layer. The thin walls of the SiO2 nanotubes allow for effective reduction in Li-ion diffusion path distance and, thus, afford a favorable rate cyclability. The high aspect ratio character of these nanotubes allow for a relatively scalable fabrication method of nanoscale SiO2-based anodes.


Scientific Reports | 2015

Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries

Wei Wang; Zachary Favors; Robert Ionescu; Rachel Ye; Hamed Hosseini Bay; Mihrimah Ozkan; Cengiz S. Ozkan

Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g−1. In particular, reversible Li storage capacities above 1500 mAh g−1 were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.


Scientific Reports | 2015

Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers

Zachary Favors; Hamed Hosseini Bay; Zafer Mutlu; Kazi Ahmed; Robert Ionescu; Rachel Ye; Mihrimah Ozkan; Cengiz S. Ozkan

The need for more energy dense and scalable Li-ion battery electrodes has become increasingly pressing with the ushering in of more powerful portable electronics and electric vehicles (EVs) requiring substantially longer range capabilities. Herein, we report on the first synthesis of nano-silicon paper electrodes synthesized via magnesiothermic reduction of electrospun SiO2 nanofiber paper produced by an in situ acid catalyzed polymerization of tetraethyl orthosilicate (TEOS) in-flight. Free-standing carbon-coated Si nanofiber binderless electrodes produce a capacity of 802 mAh g−1 after 659 cycles with a Coulombic efficiency of 99.9%, which outperforms conventionally used slurry-prepared graphite anodes by over two times on an active material basis. Silicon nanofiber paper anodes offer a completely binder-free and Cu current collector-free approach to electrode fabrication with a silicon weight percent in excess of 80%. The absence of conductive powder additives, metallic current collectors, and polymer binders in addition to the high weight percent silicon all contribute to significantly increasing capacity at the cell level.


Scientific Reports | 2015

Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.

Brennan Campbell; Robert Ionescu; Zachary Favors; Cengiz S. Ozkan; Mihrimah Ozkan

Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.


IEEE Transactions on Nanotechnology | 2014

Synthesis of Atomically Thin

Robert Ionescu; Wei Wang; Yu Chai; Zafer Mutlu; Isaac Ruiz; Zachary Favors; Darshana Wickramaratne; Mahesh Neupane; Lauro Zavala; Roger K. Lake; Mihrimah Ozkan; Cengiz S. Ozkan

Atomically thin molybdenum disulfide (MoS2) triangles and hexagrams were prepared by a two-step growth ambient pressure chemical vapor deposition (APCVD) process. Molybdenum Trioxide (MoO3) nanobelts, a few microns in length and width, were prepared using a hydrothermal technique and utilized as the starting material. High temperature treatment of the MoO3 nanobelts followed by a rigorous sulfurization via APCVD processing provided different morphologies of MoS2 monolayers and bilayer (BL) sheets. Triangle and hexagram morphologies were characterized using Raman spectroscopy, photoluminescence (PL) measurements, scanning electron microscopy and atomic force microscopy (AFM). The regrowth step in the CVD process was proven to be ideal in enlarging the grain size. PL and Raman spectroscopy and AFM results confirmed the presence of monolayer and BL regions in the regrowth growth process. Triangle and hexagram domains are observed to be cooperatively nucleating and coalescing together to form large-area layers. Furthermore, the electrical transport properties of the synthesized MoS2 layers were studied. Electron mobility based on back gated field effect transistors was measured to be approximately 0.02 cm2/V. S.


Scientific Reports | 2017

{\bf MoS}_{\bf 2}

Wei Wang; Zachary Favors; Changling Li; Chueh Liu; Rachel Ye; Chengyin Fu; Krassimir N. Bozhilov; Juchen Guo; Mihrimah Ozkan; Cengiz S. Ozkan

Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g−1, superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L−1 with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications.


Scientific Reports | 2016

Triangles and Hexagrams and Their Electrical Transport Properties

Brennan Campbell; Robert Ionescu; Maxwell Tolchin; Kazi Ahmed; Zachary Favors; Krassimir N. Bozhilov; Cengiz S. Ozkan; Mihrimah Ozkan

Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g−1, compared to a value of 7.3 cm2 g−1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g−1 after 50 cycles at a C-rate of C/5 (0.7 A gSi−1) and high areal loading (2 mg cm−2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi−1), the anode maintained a specific capacity of 654.3 mAh g−1 – nearly 2x higher than graphite’s theoretical value (372 mAh g−1).

Collaboration


Dive into the Zachary Favors's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihrimah Ozkan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert Ionescu

University of California

View shared research outputs
Top Co-Authors

Avatar

Kazi Ahmed

University of California

View shared research outputs
Top Co-Authors

Avatar

Zafer Mutlu

University of California

View shared research outputs
Top Co-Authors

Avatar

Aaron George

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chueh Liu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge