Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zachary Pincus is active.

Publication


Featured researches published by Zachary Pincus.


Nature | 2008

Mechanism of shape determination in motile cells

Kinneret Keren; Zachary Pincus; G. Allen; Erin L. Barnhart; Gerard Marriott; Alex Mogilner; Julie A. Theriot

The shape of motile cells is determined by many dynamic processes spanning several orders of magnitude in space and time, from local polymerization of actin monomers at subsecond timescales to global, cell-scale geometry that may persist for hours. Understanding the mechanism of shape determination in cells has proved to be extremely challenging due to the numerous components involved and the complexity of their interactions. Here we harness the natural phenotypic variability in a large population of motile epithelial keratocytes from fish (Hypsophrys nicaraguensis) to reveal mechanisms of shape determination. We find that the cells inhabit a low-dimensional, highly correlated spectrum of possible functional states. We further show that a model of actin network treadmilling in an inextensible membrane bag can quantitatively recapitulate this spectrum and predict both cell shape and speed. Our model provides a simple biochemical and biophysical basis for the observed morphology and behaviour of motile cells.


Nature | 2015

MicroRNA silencing for cancer therapy targeted to the tumour microenvironment

Christopher J. Cheng; Raman Bahal; Imran Babar; Zachary Pincus; Francisco N. Barrera; Connie Liu; Alexander A. Svoronos; Demetrios T. Braddock; Peter M. Glazer; Donald M. Engelman; W. Mark Saltzman; Frank J. Slack

MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes, and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumours that depend on these microRNAs are said to display oncomiR addiction. Some of the most effective anticancer therapies target oncogenes such as EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (that is, antimiRs) is an evolving therapeutic strategy. However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells. Here we introduce a novel antimiR delivery platform that targets the acidic tumour microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We find that the attachment of peptide nucleic acid antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produces a novel construct that could target the tumour microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumours (pH approximately 6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new model for using antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.


Current Biology | 2010

MicroRNAs Both Promote and Antagonize Longevity in C. elegans

Alexandre de Lencastre; Zachary Pincus; Katherine Zhou; Masaomi Kato; Siu Sylvia Lee; Frank J. Slack

BACKGROUND aging is under genetic control in C. elegans, but the mechanisms of life-span regulation are not completely known. MicroRNAs (miRNAs) regulate various aspects of development and metabolism, and one miRNA has been previously implicated in life span. RESULTS here we show that multiple miRNAs change expression in C. elegans aging, including novel miRNAs, and that mutations in several of the most upregulated miRNAs lead to life-span defects. Some act to promote normal life span and stress resistance, whereas others inhibit these phenomena. We find that these miRNAs genetically interact with genes in the DNA damage checkpoint response pathway and in the insulin signaling pathway. CONCLUSIONS our findings reveal that miRNAs both positively and negatively influence life span. Because several miRNAs upregulated during aging regulate genes in conserved pathways of aging and thereby influence life span in C. elegans, we propose that miRNAs may play important roles in stress response and aging of more complex organisms.


PLOS Biology | 2007

Emergence of Large-Scale Cell Morphology and Movement from Local Actin Filament Growth Dynamics

Catherine I. Lacayo; Zachary Pincus; Martijn M. VanDuijn; Cyrus A. Wilson; Daniel A. Fletcher; Frank B. Gertler; Alex Mogilner; Julie A. Theriot

Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions.


Cell | 2010

Peptidoglycan Crosslinking Relaxation Promotes Helicobacter pylori's Helical Shape and Stomach Colonization

Laura K. Sycuro; Zachary Pincus; Kimberley D. Gutierrez; Jacob Biboy; Chelsea A. Stern; Waldemar Vollmer; Nina R. Salama

The mechanisms by which bacterial cells generate helical cell shape and its functional role are poorly understood. Helical shape of the human pathogen Helicobacter pylori may facilitate penetration of the thick gastric mucus where it replicates. We identified four genes required for helical shape: three LytM peptidoglycan endopeptidase homologs (csd1-3) and a ccmA homolog. Surrounding the cytoplasmic membrane of most bacteria, the peptidoglycan (murein) sacculus is a meshwork of glycan strands joined by peptide crosslinks. Intact cells and isolated sacculi from mutants lacking any single csd gene or ccmA formed curved rods and showed increased peptidoglycan crosslinking. Quantitative morphological analyses of multiple-gene deletion mutants revealed each protein uniquely contributes to a shape-generating pathway. This pathway is required for robust colonization of the stomach in spite of normal directional motility. Our findings suggest that the coordinated action of multiple proteins relaxes peptidoglycan crosslinking, enabling helical cell curvature and twist.


Journal of Microscopy | 2007

Comparison of quantitative methods for cell‐shape analysis

Zachary Pincus; Julie A. Theriot

Morphology is an important large‐scale manifestation of the global organizational and physiological state of cells, and is commonly used as a qualitative or quantitative measure of the outcome of various assays. Here we evaluate several different basic representations of cell shape – binary masks, distance maps and polygonal outlines – and different subsequent encodings of those representations – Fourier and Zernike decompositions, and the principal and independent components analyses – to determine which are best at capturing biologically important shape variation. We find that principal components analysis of two‐dimensional shapes represented as outlines provide measures of morphology which are quantitative, biologically meaningful, human interpretable and work well across a range of cell types and parameter settings.


PLOS Genetics | 2011

MicroRNA predictors of longevity in Caenorhabditis elegans.

Zachary Pincus; Thalyana Smith-Vikos; Frank J. Slack

Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such “biomarkers of aging,” genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid–adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products (“age pigments”) report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA “biomarkers of aging” act upstream in insulin/IGF-1–like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan.


Nature Neuroscience | 2004

Restructuring the neuronal stress response with anti-glucocorticoid gene delivery

Daniela Kaufer; William O Ogle; Zachary Pincus; K L Clark; A C Nicholas; K M Dinkel; Theodore C. Dumas; D Ferguson; Angela L. Lee; M A Winters; Robert M. Sapolsky

Glucocorticoids, the adrenal steroids released during stress, compromise the ability of neurons to survive neurological injury. In contrast, estrogen protects neurons against such injuries. We designed three genetic interventions to manipulate the actions of glucocorticoids, which reduced their deleterious effects in both in vitro and in vivo rat models. The most effective of these interventions created a chimeric receptor combining the ligand-binding domain of the glucocorticoid receptor and the DNA-binding domain of the estrogen receptor. Expression of this chimeric receptor reduced hippocampal lesion size after neurological damage by 63% and reversed the outcome of the stress response by rendering glucocorticoids protective rather than destructive. Our findings elucidate three principal steps in the neuronal stress-response pathway, all of which are amenable to therapeutic intervention.


PLOS Pathogens | 2012

Multiple Peptidoglycan Modification Networks Modulate Helicobacter pylori's Cell Shape, Motility, and Colonization Potential

Laura K. Sycuro; Timna J. Wyckoff; Jacob Biboy; Petra Born; Zachary Pincus; Waldemar Vollmer; Nina R. Salama

Helical cell shape of the gastric pathogen Helicobacter pylori has been suggested to promote virulence through viscosity-dependent enhancement of swimming velocity. However, H. pylori csd1 mutants, which are curved but lack helical twist, show normal velocity in viscous polymer solutions and the reason for their deficiency in stomach colonization has remained unclear. Characterization of new rod shaped mutants identified Csd4, a DL-carboxypeptidase of peptidoglycan (PG) tripeptide monomers and Csd5, a putative scaffolding protein. Morphological and biochemical studies indicated Csd4 tripeptide cleavage and Csd1 crosslinking relaxation modify the PG sacculus through independent networks that coordinately generate helical shape. csd4 mutants show attenuation of stomach colonization, but no change in proinflammatory cytokine induction, despite four-fold higher levels of Nod1-agonist tripeptides in the PG sacculus. Motility analysis of similarly shaped mutants bearing distinct alterations in PG modifications revealed deficits associated with shape, but only in gel-like media and not viscous solutions. As gastric mucus displays viscoelastic gel-like properties, our results suggest enhanced penetration of the mucus barrier underlies the fitness advantage conferred by H. pyloris characteristic shape.


Molecular Microbiology | 2013

Flow cytometry‐based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology

Laura K. Sycuro; Chelsea S. Rule; Timothy W. Petersen; Timna J. Wyckoff; Tate H. Sessler; Dilip B. Nagarkar; Fakhra Khalid; Zachary Pincus; Jacoby Biboy; Waldemar Vollmer; Nina R. Salama

The helical cell shape of Helicobacter pylori is highly conserved and contributes to its ability to swim through and colonize the viscous gastric mucus layer. A multi‐faceted peptidoglycan (PG) modification programme involving four recently characterized peptidases and two accessory proteins is essential for maintaining H. pyloris helicity. To expedite identification of additional shape‐determining genes, we employed flow cytometry with fluorescence‐activated cell sorting (FACS) to enrich a transposon library for bacterial cells with altered light scattering profiles that correlate with perturbed cell morphology. After a single round of sorting, 15% of our clones exhibited a stable cell shape defect, reflecting 37‐fold enrichment. Sorted clones with straight rod morphology contained insertions in known PG peptidases, as well as an insertion in csd6, which we demonstrated has ld‐carboxypeptidase activity and cleaves monomeric tetrapeptides in the PG sacculus, yielding tripeptides. Other mutants had only slight changes in helicity due to insertions in genes encoding MviN/MurJ, a protein possibly involved in initiating PG synthesis, and the hypothetical protein HPG27_782. Our findings demonstrate FACS robustly detects perturbations of bacterial cell shape and identify additional PG peptide modifications associated with helical cell shape in H. pylori.

Collaboration


Dive into the Zachary Pincus's collaboration.

Top Co-Authors

Avatar

Frank J. Slack

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina R. Salama

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura K. Sycuro

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William B. Zhang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge