Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zachary S. Lorsch is active.

Publication


Featured researches published by Zachary S. Lorsch.


The Journal of Neuroscience | 2015

Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress

Georgia E. Hodes; Madeline L. Pfau; Immanuel Purushothaman; H. Francisca Ahn; Sam A. Golden; Daniel J. Christoffel; Jane Magida; Anna Brancato; Aki Takahashi; Meghan E. Flanigan; Caroline Ménard; Hossein Aleyasin; Ja Wook Koo; Zachary S. Lorsch; Jian Feng; Mitra Heshmati; Minghui Wang; Gustavo Turecki; Rachel Neve; Bin Zhang; Li Shen; Eric J. Nestler; Scott J. Russo

Depression and anxiety disorders are more prevalent in females, but the majority of research in animal models, the first step in finding new treatments, has focused predominantly on males. Here we report that exposure to subchronic variable stress (SCVS) induces depression-associated behaviors in female mice, whereas males are resilient as they do not develop these behavioral abnormalities. In concert with these different behavioral responses, transcriptional analysis of nucleus accumbens (NAc), a major brain reward region, by use of RNA sequencing (RNA-seq) revealed markedly different patterns of stress regulation of gene expression between the sexes. Among the genes displaying sex differences was DNA methyltransferase 3a (Dnmt3a), which shows a greater induction in females after SCVS. Interestingly, Dnmt3a expression levels were increased in the NAc of depressed humans, an effect seen in both males and females. Local overexpression of Dnmt3a in NAc rendered male mice more susceptible to SCVS, whereas Dnmt3a knock-out in this region rendered females more resilient, directly implicating this gene in stress responses. Associated with this enhanced resilience of female mice upon NAc knock-out of Dnmt3a was a partial shift of the NAc female transcriptome toward the male pattern after SCVS. These data indicate that males and females undergo different patterns of transcriptional regulation in response to stress and that a DNA methyltransferase in NAc contributes to sex differences in stress vulnerability. SIGNIFICANCE STATEMENT Women have a higher incidence of depression than men. However, preclinical models, the first step in developing new diagnostics and therapeutics, have been performed mainly on male subjects. Using a stress-based animal model of depression that causes behavioral effects in females but not males, we demonstrate a sex-specific transcriptional profile in brain reward circuitry. This transcriptional profile can be altered by removal of an epigenetic mechanism, which normally suppresses DNA transcription, creating a hybrid male/female transcriptional pattern. Removal of this epigenetic mechanism also induces behavioral resilience to stress in females. These findings shed new light onto molecular factors controlling sex differences in stress response.


Biological Psychiatry | 2016

Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress-Induced Depressive Behaviors.

Ja Wook Koo; Benoit Labonté; Olivia Engmann; Erin S. Calipari; Barbara Juarez; Zachary S. Lorsch; Jessica J. Walsh; Allyson K. Friedman; Jordan T. Yorgason; Ming-Hu Han; Eric J. Nestler

BACKGROUND Previous work has shown that chronic social defeat stress (CSDS) induces increased phasic firing of ventral tegmental area (VTA) dopamine (DA) neurons that project to the nucleus accumbens (NAc) selectively in mice that are susceptible to the deleterious effects of the stress. In addition, acute optogenetic phasic stimulation of these neurons promotes susceptibility in animals exposed to acute defeat stress. These findings are paradoxical, as increased DA signaling in NAc normally promotes motivation and reward, and the influence of chronic phasic VTA firing in the face of chronic stress is unknown. METHODS We used CSDS with repeated optogenetic activation and pharmacologic manipulations of the mesolimbic VTA-NAc pathway to examine the role of brain-derived neurotrophic factor (BDNF) and DA signaling in depressive-like behaviors. We measured BDNF protein expression and DA release in this model. RESULTS Pharmacologic blockade of BDNF-tyrosine receptor kinase B (TrkB) signaling, but not DA signaling, in NAc prevented CSDS-induced behavioral abnormalities. Chronic optogenetic phasic stimulation of the VTA-NAc circuit during CSDS exacerbated the defeat-induced behavioral symptoms, and these aggravated symptoms were also normalized by BDNF-TrkB blockade in NAc. The aggravated behavioral deficits induced by phasic stimulation of the VTA-NAc pathway were blocked as well by local knockdown of BDNF in VTA. CONCLUSIONS These findings show that BDNF-TrkB signaling, rather than DA signaling, in the VTA-NAc circuit is crucial for facilitating depressive-like outcomes after CSDS and they establish BDNF-TrkB signaling as a pathologic mechanism during periods of chronic stress.


Nature Neuroscience | 2015

Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area

Ja Wook Koo; Michelle S. Mazei-Robison; Quincey LaPlant; Gabor Egervari; Kevin M Braunscheidel; Danielle N. Adank; Deveroux Ferguson; Jian Feng; HaoSheng Sun; Kimberly N. Scobie; Diane Damez-Werno; Efrain Ribeiro; Catherine J. Peña; Deena M. Walker; Rosemary C. Bagot; Michael E. Cahill; Sarah Ann R Anderson; Benoit Labonté; Georgia E. Hodes; Heidi A. Browne; Benjamin Chadwick; Alfred J. Robison; Vincent Vialou; Caroline Dias; Zachary S. Lorsch; Ezekiell Mouzon; Mary Kay Lobo; David M. Dietz; Scott J. Russo; Rachael L. Neve

Brain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VTA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we found that morphine suppressed binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which resulted from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributed to Bdnf repression and associated behavioral plasticity to morphine. Our findings suggest previously unknown epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.


Nature Neuroscience | 2017

Social stress induces neurovascular pathology promoting depression

Caroline Ménard; Madeline L. Pfau; Georgia E. Hodes; Veronika Kana; Victoria X. Wang; Sylvain Bouchard; Aki Takahashi; Meghan E. Flanigan; Hossein Aleyasin; Katherine LeClair; William G.M. Janssen; Benoit Labonté; Eric M. Parise; Zachary S. Lorsch; Sam A. Golden; Mitra Heshmati; Carol A. Tamminga; Gustavo Turecki; Matthew Campbell; Zahi A. Fayad; Cheuk Y. Tang; Miriam Merad; Scott J. Russo

Studies suggest that heightened peripheral inflammation contributes to the pathogenesis of major depressive disorder. We investigated the effect of chronic social defeat stress, a mouse model of depression, on blood–brain barrier (BBB) permeability and infiltration of peripheral immune signals. We found reduced expression of the endothelial cell tight junction protein claudin-5 (Cldn5) and abnormal blood vessel morphology in nucleus accumbens (NAc) of stress-susceptible but not resilient mice. CLDN5 expression was also decreased in NAc of depressed patients. Cldn5 downregulation was sufficient to induce depression-like behaviors following subthreshold social stress whereas chronic antidepressant treatment rescued Cldn5 loss and promoted resilience. Reduced BBB integrity in NAc of stress-susceptible or mice injected with adeno-associated virus expressing shRNA against Cldn5 caused infiltration of the peripheral cytokine interleukin-6 (IL-6) into brain parenchyma and subsequent expression of depression-like behaviors. These findings suggest that chronic social stress alters BBB integrity through loss of tight junction protein Cldn5, promoting peripheral IL-6 passage across the BBB and depression.Chronic social defeat stress induces loss of protein claudin-5, leading to abnormalities in blood vessel morphology, increased blood brain barrier permeability, infiltration of immune signals and depression-like behaviors.


Nature Medicine | 2017

Sex-specific transcriptional signatures in human depression

Benoit Labonté; Olivia Engmann; Immanuel Purushothaman; Caroline Ménard; Junshi Wang; Chunfeng Tan; Joseph R. Scarpa; Gregory Moy; Yong-Hwee Eddie Loh; Michael E. Cahill; Zachary S. Lorsch; Peter J. Hamilton; Erin S. Calipari; Georgia E. Hodes; Orna Issler; Hope Kronman; Madeline L. Pfau; Aleksandar Obradovic; Yan Dong; Rachael L. Neve; Scott J. Russo; Andrew Kazarskis; Carol A. Tamminga; Naguib Mechawar; Gustavo Turecki; Bin Zhang; Li Shen; Eric J. Nestler

Major depressive disorder (MDD) is a leading cause of disease burden worldwide. While the incidence, symptoms and treatment of MDD all point toward major sex differences, the molecular mechanisms underlying this sexual dimorphism remain largely unknown. Here, combining differential expression and gene coexpression network analyses, we provide a comprehensive characterization of male and female transcriptional profiles associated with MDD across six brain regions. We overlap our human profiles with those from a mouse model, chronic variable stress, and capitalize on converging pathways to define molecular and physiological mechanisms underlying the expression of stress susceptibility in males and females. Our results show a major rearrangement of transcriptional patterns in MDD, with limited overlap between males and females, an effect seen in both depressed humans and stressed mice. We identify key regulators of sex-specific gene networks underlying MDD and confirm their sex-specific impact as mediators of stress susceptibility. For example, downregulation of the female-specific hub gene Dusp6 in mouse prefrontal cortex mimicked stress susceptibility in females, but not males, by increasing ERK signaling and pyramidal neuron excitability. Such Dusp6 downregulation also recapitulated the transcriptional remodeling that occurs in prefrontal cortex of depressed females. Together our findings reveal marked sexual dimorphism at the transcriptional level in MDD and highlight the importance of studying sex-specific treatments for this disorder.


Neuropsychopharmacology | 2018

In Vivo Fiber Photometry Reveals Signature of Future Stress Susceptibility in Nucleus Accumbens

Jessie Muir; Zachary S. Lorsch; Charu Ramakrishnan; Karl Deisseroth; Eric J. Nestler; Erin S. Calipari; Rosemary C. Bagot

Recognizing why chronic stress causes only a subset of individuals to become depressed is critical to understanding depression on a basic level and, also, to developing treatments that increase resilience. Stress-induced alterations in the activity of reward-related brain regions, such as the nucleus accumbens (NAc), are linked to the pathophysiology of depression. However, it has been difficult to determine if differences in stress susceptibility are pre-existing or merely an effect of chronic stress. The NAc consists largely of medium spiny neurons (MSNs), distinguished by their predominant expression of either D1 or D2 dopamine receptors. Mice that develop depressive-like symptoms after chronic social defeat stress show distinct changes in the activity of these two cell subtypes. Until now it has not been possible to determine whether such effects are merely a consequence of stress or in fact precede stress and, thus, have utility in pre-identifying stress-susceptible individuals. The goal of this study was to define a cell-type specific signature of stress susceptibility and resilience. Using fiber photometry calcium imaging, we recorded calcium transients in NAc D1- and D2-MSNs in awake behaving mice and found that D1-MSN activity is a predictive marker of depression susceptibility: prior to stress, mice that will later become resilient had increased baseline D1- MSN activity, and increased calcium transients specific to social interaction. Differences in D2- MSN activity were not specific to social interaction. Our findings identify a pre-existing mechanism of stress-induced susceptibility, creating the potential to target preventative interventions to the most relevant populations.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior

Ashley E. Lepack; Rosemary C. Bagot; Catherine J. Peña; Yong-Hwee Eddie Loh; Lorna Farrelly; Yang Lu; Samuel K. Powell; Zachary S. Lorsch; Orna Issler; Hannah M. Cates; Carol A. Tamminga; Henrik Molina; Li Shen; Eric J. Nestler; C. David Allis; Ian Maze

Significance Human major depressive disorder is a chronic remitting syndrome that affects millions of individuals worldwide; however, the molecular mechanisms mediating this syndrome remain elusive. Here, using a unique combination of epigenome-wide and behavioral analyses, we demonstrate a role for histone variant dynamics in the nucleus accumbens (NAc)—a critical brain center of reward and mood—contributing to stress susceptibility in mice. These studies, which also demonstrate that molecular blockade of aberrant dynamics in the NAc promotes resilience to chronic stress, promise to aid in the identification of novel molecular targets (i.e., downstream genes displaying altered expression as the result of stress-induced histone dynamics) that may be exploited in the development of more effective pharmacotherapeutics. Human major depressive disorder (MDD), along with related mood disorders, is among the world’s greatest public health concerns; however, its pathophysiology remains poorly understood. Persistent changes in gene expression are known to promote physiological aberrations implicated in MDD. More recently, histone mechanisms affecting cell type- and regional-specific chromatin structures have also been shown to contribute to transcriptional programs related to depressive behaviors, as well as responses to antidepressants. Although much emphasis has been placed in recent years on roles for histone posttranslational modifications and chromatin-remodeling events in the etiology of MDD, it has become increasingly clear that replication-independent histone variants (e.g., H3.3), which differ in primary amino acid sequence from their canonical counterparts, similarly play critical roles in the regulation of activity-dependent neuronal transcription, synaptic connectivity, and behavioral plasticity. Here, we demonstrate a role for increased H3.3 dynamics in the nucleus accumbens (NAc)—a key limbic brain reward region—in the regulation of aberrant social stress-mediated gene expression and the precipitation of depressive-like behaviors in mice. We find that molecular blockade of these dynamics promotes resilience to chronic social stress and results in a partial renormalization of stress-associated transcriptional patterns in the NAc. In sum, our findings establish H3.3 dynamics as a critical, and previously undocumented, regulator of mood and suggest that future therapies aimed at modulating striatal histone dynamics may potentiate beneficial behavioral adaptations to negative emotional stimuli.


Frontiers in Molecular Neuroscience | 2016

Integrative Analysis of Sex-Specific microRNA Networks Following Stress in Mouse Nucleus Accumbens

Madeline L. Pfau; Immanuel Purushothaman; Jian Feng; Sam A. Golden; Hossein Aleyasin; Zachary S. Lorsch; Hannah M. Cates; Meghan E. Flanigan; Caroline Ménard; Mitra Heshmati; Zichen Wang; Avi Ma'ayan; Li Shen; Georgia E. Hodes; Scott J. Russo

Adult women are twice as likely as men to suffer from affective and anxiety disorders, although the mechanisms underlying heightened female stress susceptibility are incompletely understood. Recent findings in mouse Nucleus Accumbens (NAc) suggest a role for DNA methylation-driven sex differences in genome-wide transcriptional profiles. However, the role of another epigenetic process—microRNA (miR) regulation—has yet to be explored. We exposed male and female mice to Subchronic Variable Stress (SCVS), a stress paradigm that produces depression-like behavior in female, but not male, mice, and performed next generation mRNA and miR sequencing on NAc tissue. We applied a combination of differential expression, miR-mRNA network and functional enrichment analyses to characterize the transcriptional and post-transcriptional landscape of sex differences in NAc stress response. We find that male and female mice exhibit largely non-overlapping miR and mRNA profiles following SCVS. The two sexes also show enrichment of different molecular pathways and functions. Collectively, our results suggest that males and females mount fundamentally different transcriptional and post-transcriptional responses to SCVS and engage sex-specific molecular processes following stress. These findings have implications for the pathophysiology and treatment of stress-related disorders in women.


Nature Communications | 2018

Estrogen receptor α drives pro-resilient transcription in mouse models of depression

Zachary S. Lorsch; Yong-Hwee Eddie Loh; Immanuel Purushothaman; Deena M. Walker; Eric M. Parise; Marine Salery; Michael E. Cahill; Georgia E. Hodes; Madeline L. Pfau; Hope Kronman; Peter J. Hamilton; Orna Issler; Benoit Labonté; Ann E. Symonds; Matthew Zucker; Tie-Yuan Zhang; Michael J. Meaney; Scott J. Russo; Li Shen; Rosemary C. Bagot; Eric J. Nestler

Most people exposed to stress do not develop depression. Animal models have shown that stress resilience is an active state that requires broad transcriptional adaptations, but how this homeostatic process is regulated remains poorly understood. In this study, we analyze upstream regulators of genes differentially expressed after chronic social defeat stress. We identify estrogen receptor α (ERα) as the top regulator of pro-resilient transcriptional changes in the nucleus accumbens (NAc), a key brain reward region implicated in depression. In accordance with these findings, nuclear ERα protein levels are altered by stress in male and female mice. Further, overexpression of ERα in the NAc promotes stress resilience in both sexes. Subsequent RNA-sequencing reveals that ERα overexpression in NAc reproduces the transcriptional signature of resilience in male, but not female, mice. These results indicate that NAc ERα is an important regulator of pro-resilient transcriptional changes, but with sex-specific downstream targets.Stress resilience is accompanied by broad changes in gene expression. This study shows that estrogen receptor α (ERα) is a key upstream regulator of these changes in the nucleus accumbens, and that overexpression of ERα increases behavioral resilience via a sex-specific transcriptional mechanism.


bioRxiv | 2018

Zfp189 Mediates Stress Resilience Through a CREB-Regulated Transcriptional Network in Prefrontal Cortex

Zachary S. Lorsch; Peter J. Hamilton; Aarthi Ramakrishnan; Eric M. Parise; William J Wright; Marine Salery; Ashley E. Lepack; Philipp Mews; Orna Issler; Andrew McKenzie; Xianxiao Zhou; Lyonna F Parise; Stephen T. Pirpinias; Idelisse Ortiz Torres; Sarah Montgomery; Yong-Hwee Eddie Loh; Benoit Labonté; Andrew Conkey; Ann E. Symonds; Rachael L. Neve; Gustavo Turecki; Ian Maze; Yan Dong; Bin Zhang; Li Shen; Rosemary C. Bagot; Eric J. Nestler

Stress resilience involves numerous brain-wide transcriptional changes. Determining the organization and orchestration of these transcriptional events may reveal novel antidepressant targets, but this remains unexplored. Here, we characterize the resilient transcriptome with co-expression analysis and identify a single transcriptionally-active uniquely-resilient gene network. Zfp189, a previously unstudied zinc finger protein, is the top network key driver and its overexpression in prefrontal cortical (PFC) neurons preferentially activates this network, alters neuronal activity and promotes behavioral resilience. CREB, which binds Zfp189, is the top upstream regulator of this network. To probe CREB-Zfp189 interactions as a network regulatory mechanism, we employ CRISPR-mediated locus-specific transcriptional reprogramming to direct CREB selectively to the Zfp189 promoter. This single molecular interaction in PFC neurons recapitulates the pro-resilient Zfp189-dependent downstream effects on gene network activity, electrophysiology and behavior. These findings reveal an essential role for Zfp189 and a CREB-Zfp189 regulatory axis in mediating a central transcriptional network of resilience.

Collaboration


Dive into the Zachary S. Lorsch's collaboration.

Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Li Shen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Immanuel Purushothaman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Georgia E. Hodes

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Scott J. Russo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Benoit Labonté

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Bin Zhang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Madeline L. Pfau

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yong-Hwee Eddie Loh

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Caroline Ménard

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge