Zaegyoo Hah
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zaegyoo Hah.
Ultrasound in Medicine and Biology | 2012
Christopher T. Barry; Bradley Mills; Zaegyoo Hah; Robert A. Mooney; Charlotte K. Ryan; Deborah J. Rubens; Kevin J. Parker
Crawling waves, which are interfering shear wave patterns, can be generated in liver tissue over a range of frequencies. Some important biomechanical properties of the liver can be determined by imaging the crawling waves using Doppler techniques and analyzing the patterns. We report that the dispersion of shear wave velocity and attenuation, that is, the frequency dependence of these parameters, are strongly correlated with the degree of steatosis in a mouse liver model, ex vivo. The results demonstrate the possibility of assessing liver steatosis using noninvasive imaging methods that are compatible with color Doppler scanners and, furthermore, suggest that liver steatosis can be separated from fibrosis by assessing the dispersion or frequency dependence of shear wave propagations.
Ultrasound in Medicine and Biology | 2012
Zaegyoo Hah; Chris Hazard; Bradley Mills; Christopher T. Barry; Deborah J. Rubens; Kevin J. Parker
This paper introduces methods to generate crawling wave interference patterns from the displacement fields generated from radiation force pushes on a GE Logiq 9 scanner. The same transducer and system provides both the pushing pulses to generate the shear waves and the tracking pulses to measure the displacements. Acoustic power and system limitations result in largely impulsive displacement fields. Measured displacements from pushes on either side of a region-of-interest (ROI) are used to calculate continuously varying interference patterns. This technique is explained along with a brief discussion of the conventional mechanical source-driven crawling waves for comparison. We demonstrate the method on three example cases: a gelatin-based phantom with a cylindrical inclusion, an oil-gelatin phantom and mouse livers. The oil-gelatin phantom and the mouse livers demonstrate not only shear speed estimation, but the frequency dependence of the shear wave speeds.
Ultrasound in Medicine and Biology | 2014
Christopher T. Barry; Zaegyoo Hah; Alexander Partin; Robert A. Mooney; Kuang-Hsiang Chuang; Alicia Augustine; Anthony Almudevar; Wenqing Cao; Deborah J. Rubens; Kevin J. Parker
The accumulation of fat droplets within the liver is an important marker of liver disease. This study assesses gradations of steatosis in mouse livers using crawling waves, which are interfering patterns of shear waves introduced into the liver by external sources. The crawling waves are detected by Doppler ultrasound imaging techniques, and these are analyzed to estimate the shear wave speed as a function of frequency between 200 and 360 Hz. In a study of 70 mice with progressive increases in steatosis from 0% to >60%, increases in steatosis are found to increase the dispersion, or frequency dependence, of shear wave speed. This finding confirms an earlier, smaller study and points to the potential of a scoring system for steatosis based on shear wave dispersion.
International Journal for Numerical Methods in Biomedical Engineering | 2012
Kristen H. Lee; Benjamin A. Szajewski; Zaegyoo Hah; Kevin J. Parker; Antoinette M. Maniatty
In this study, a finite element model of a tissue-mimicking, viscoelastic phantom with a stiffer cylindrical inclusion subjected to an acoustic radiation force (ARF) is presented, and the resulting shear waves through the heterogeneous media are simulated, analyzed, and compared with experimental data. Six different models for the ARF were considered and compared. Each study used the same finite element model, but applied the following: (1) full radiation push; (2) focal region push; (3) single element focal point source; or (4) various thresholds of the full radiation push. For each case, displacements at discrete locations were determined and compared. The finite element simulation results for the full radiation push matched well with the experimental data with respect to replicating the shear wave speed and attenuation in the peak displacements through the background medium and inclusion, but did not illustrate comparable recovery after the peak displacements. As a result of this study, it has been shown that a focal region or point source push is not adequate to accurately model the effects of the full radiation push, but thresholding the full push can produce comparable results and reduce computation time.
Ultrasound in Medicine and Biology | 2012
Christopher Robert Hazard; Zaegyoo Hah; Deborah J. Rubens; Kevin J. Parker
An ultrasound system (GE Logiq 9) was modified to produce a synthetic crawling wave using shear wave displacements generated by the radiation force of focused beams formed at the left and the right edge of the region of interest (ROI). Two types of focusing, normal and axicon, were implemented. Baseband (IQ) data was collected to determine the left and right displacements, which were then used to calculate an interference pattern. By imposing a variable delay between the two pushes, the interference pattern moves across the ROI to produce crawling waves. Also temperature and pressure measurements were made to assess the safety issues. The temperature profiles measured in a veal liver along the focal line showed the maximum temperature rise less than 0.8°C, and the pressure measurements obtained in degassed water and derated by 0.3 dB/cm/MHz demonstrate that the system can operate within FDA safety guidelines.
Ultrasound in Medicine and Biology | 2014
Alexander Partin; Zaegyoo Hah; Christopher T. Barry; Deborah J. Rubens; Kevin J. Parker
We describe a surface-based approach to the generation of shear wave interference patterns, called crawling waves (CrW), within a medium and derive local estimates of biomechanical properties of tissue. In previous experiments, elongated bars operating as vibration sources were used to generate CrW propagation in samples. In the present study, however, a pair of miniature circular vibration sources was applied to the overlying skin to generate the CrW within the medium. The shape and position of the miniature sources make this configuration more applicable for in vivo implementation. A modified ultrasound imaging system is used to display the CrW propagation. A shear speed mapping algorithm is developed using a detailed analysis of the CrW. The proposed setup is applied to several biomaterials including a homogeneous phantom, an inhomogeneous phantom and an ex vivo human liver. The data are analyzed using the mapping algorithm to reveal the biomechanical properties of the biomaterials.
Ultrasonic Imaging | 2010
Zaegyoo Hah; Christopher Robert Hazard; Young Thung Cho; Deborah J. Rubens; Kevin J. Parker
Crawling waves are generated by an interference of two oscillating waves traveling in opposite directions, with a progressive movement resulting from a frequency difference or a phase difference between the sources. While the idea has been applied to numerous applications, all the previous reports used mechanical sources to vibrate the medium. It is shown, through experiments and simulation, that crawling waves can be generated from focused beams that produce radiation force excitation within the tissue. Some examples are also shown.
internaltional ultrasonics symposium | 2015
Mark L. Palmeri; Kathy Nightingale; Shana Fielding; Ned C. Rouze; Yufeng Deng; Ted Lynch; Shigao Chen; Pengfei Song; Matthew W. Urban; Hua Xie; Keith A. Wear; Brian S. Garra; Andy Milkowski; Stephen Rosenzweig; Paul L. Carson; Richard G. Barr; Vijay Shamdasani; Michael MacDonald; Michael Wang; Gilles Guenette; Yasuo Miyajima; Yoko Okamura; Manish Dhyani; Anthony E. Samir; Zaegyoo Hah; Glen McLaughlin; Albert Gee; Yuling Chen; David J. Napolitano; Steve McAleavey
Using ultrasonic shear wave speed (SWS) estimates has become popular to noninvasively evaluate liver fibrosis, but significant inter-system variability in liver SWS measurements can preclude meaningful comparison of measurements performed with different systems. The RSNA Quantitative Imaging Biomarker Alliance (QIBA) ultrasound SWS committee has been developing elastic and viscoelastic (VE) phantoms to evaluate system dependencies of SWS estimates. The objective of this study is to compare SWS measurements between commercially-available systems using phantoms that have viscoelastic properties similar to those observed in normal and fibrotic liver. CIRS, Inc. fabricated three phantoms using a proprietary oil-water emulsion infused in a Zerdine® hydrogel that were matched in viscoelastic behavior to healthy and fibrotic human liver data. Phantoms were measured at academic, clinical, government and vendor sites using different systems with curvilinear arrays at multiple focal depths (3.0, 4.5 & 7.0 cm). The results of this study show that current-generation ultrasound SWS measurement systems are able to differentiate viscoelastic materials that span healthy to fibrotic liver. The deepest focal depth (7.0 cm) yielded the greatest inter-system variability for each phantom (maximum of 17.7%) as evaluated by IQR. Inter-system variability was consistent across all 3 phantoms and was not a function of stiffness. Median SWS estimates for the greatest outlier system for each phantom/focal depth combination ranged from 12.7-17.6%. Future efforts will include performing more robust statistical analyses of these data, comparing these phantom data trends with viscoelastic digital phantom data, providing vendors with study site data to refine their systems to have more consistent measurements, and integrating these data into the QIBA ultrasound shear wave speed measurement profile.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2001
Stephen A. McAleavey; Zaegyoo Hah; Kevin J. Parker
The thin film phantom is a new type of ultrasound resolution test object. It consists of a thin planar substrate that is acoustically matched to the surrounding media. Precisely located scatterers on the surface of the substrate generate echo signals. The patterning of scatterers on the substrate allows echogenicity to be controlled as a function of position, which enables the production of a test object with highly reproducible and controllable scattering characteristics. We show that by vibrating the substrate in a suitable manner, an echo signal may be generated that simulates bidirectional flow. We demonstrate that a vibration of low amplitude at frequency f/sub 0/ produces a Doppler spectral signal at f/sub 0/ and -f/sub 0/, within the limits of aliasing. Furthermore, by driving the film with a bandlimited noise signal, we illustrate how a velocity distribution may be simulated. A time-varying flow velocity may be simulated by varying the noise bandwidth with time. Finally, using this technique, we demonstrate a system that simulates an arterial flow pattern, including its characteristic velocity distribution in forward and reverse directions simultaneously.
Physics in Medicine and Biology | 2012
Kenneth Hoyt; Zaegyoo Hah; Chris Hazard; Kevin J. Parker
A novel elasticity imaging system founded on the use of acoustic radiation forces from a dual beam arrangement to generate shear wave interference patterns is described. Acquired pulse-echo data and correlation-based techniques were used to estimate the resultant deformation and to visualize tissue viscoelastic response. The use of normal versus axicon focal configurations was investigated for effects on shear wave generation. Theoretical models were introduced and shown in simulation to accurately predict shear wave propagation and interference pattern properties. In a tissue-mimicking phantom, experimental results are in congruence with theoretical predictions. Using dynamic acoustic radiation force excitation, results confirm that shear wave interference patterns can be produced remotely in a particular tissue region of interest (ROI). Overall, preliminary results are encouraging and the system described may prove feasible for interrogating the viscoelastic properties of normal and diseased tissue types.