Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zafeiris Louvaris is active.

Publication


Featured researches published by Zafeiris Louvaris.


PLOS ONE | 2012

Validity of Six Activity Monitors in Chronic Obstructive Pulmonary Disease: A Comparison with Indirect Calorimetry

Hans Van Remoortel; Yogini Raste; Zafeiris Louvaris; Santiago Giavedoni; Chris Burtin; Daniel Langer; Frederick Wilson; Roberto Rabinovich; Ioannis Vogiatzis; Nicholas S. Hopkinson; Thierry Troosters

Reduced physical activity is an important feature of Chronic Obstructive Pulmonary Disease (COPD). Various activity monitors are available but their validity is poorly established. The aim was to evaluate the validity of six monitors in patients with COPD. We hypothesized triaxial monitors to be more valid compared to uniaxial monitors. Thirty-nine patients (age 68±7years, FEV1 54±18%predicted) performed a one-hour standardized activity protocol. Patients wore 6 monitors (Kenz Lifecorder (Kenz), Actiwatch, RT3, Actigraph GT3X (Actigraph), Dynaport MiniMod (MiniMod), and SenseWear Armband (SenseWear)) as well as a portable metabolic system (Oxycon Mobile). Validity was evaluated by correlation analysis between indirect calorimetry (VO2) and the monitor outputs: Metabolic Equivalent of Task [METs] (SenseWear, MiniMod), activity counts (Actiwatch), vector magnitude units (Actigraph, RT3) and arbitrary units (Kenz) over the whole protocol and slow versus fast walking. Minute-by-minute correlations were highest for the MiniMod (r = 0.82), Actigraph (r = 0.79), SenseWear (r = 0.73) and RT3 (r = 0.73). Over the whole protocol, the mean correlations were best for the SenseWear (r = 0.76), Kenz (r = 0.52), Actigraph (r = 0.49) and MiniMod (r = 0.45). The MiniMod (r = 0.94) and Actigraph (r = 0.88) performed better in detecting different walking speeds. The Dynaport MiniMod, Actigraph GT3X and SenseWear Armband (all triaxial monitors) are the most valid monitors during standardized physical activities. The Dynaport MiniMod and Actigraph GT3X discriminate best between different walking speeds.


International Journal of Behavioral Nutrition and Physical Activity | 2012

Validity of activity monitors in health and chronic disease: a systematic review

Hans Van Remoortel; Santiago Giavedoni; Yogini Raste; Chris Burtin; Zafeiris Louvaris; Elena Gimeno-Santos; Daniel Langer; Alastair Glendenning; Nicholas S. Hopkinson; Ioannis Vogiatzis; Barry T. Peterson; Frederick Wilson; Bridget Mann; Roberto Daniel Rabinovich; Milo A. Puhan; Thierry Troosters

The assessment of physical activity in healthy populations and in those with chronic diseases is challenging. The aim of this systematic review was to identify whether available activity monitors (AM) have been appropriately validated for use in assessing physical activity in these groups. Following a systematic literature search we found 134 papers meeting the inclusion criteria; 40 conducted in a field setting (validation against doubly labelled water), 86 in a laboratory setting (validation against a metabolic cart, metabolic chamber) and 8 in a field and laboratory setting. Correlation coefficients between AM outcomes and energy expenditure (EE) by the criterion method (doubly labelled water and metabolic cart/chamber) and percentage mean differences between EE estimation from the monitor and EE measurement by the criterion method were extracted. Random-effects meta-analyses were performed to pool the results across studies where possible. Types of devices were compared using meta-regression analyses. Most validation studies had been performed in healthy adults (n = 118), with few carried out in patients with chronic diseases (n = 16). For total EE, correlation coefficients were statistically significantly lower in uniaxial compared to multisensor devices. For active EE, correlations were slightly but not significantly lower in uniaxial compared to triaxial and multisensor devices. Uniaxial devices tended to underestimate TEE (−12.07 (95%CI; -18.28 to −5.85) %) compared to triaxial (−6.85 (95%CI; -18.20 to 4.49) %, p = 0.37) and were statistically significantly less accurate than multisensor devices (−3.64 (95%CI; -8.97 to 1.70) %, p<0.001). TEE was underestimated during slow walking speeds in 69% of the lab validation studies compared to 37%, 30% and 37% of the studies during intermediate, fast walking speed and running, respectively. The high level of heterogeneity in the validation studies is only partly explained by the type of activity monitor and the activity monitor outcome. Triaxial and multisensor devices tend to be more valid monitors. Since activity monitors are less accurate at slow walking speeds and information about validated activity monitors in chronic disease populations is lacking, proper validation studies in these populations are needed prior to their inclusion in clinical trials.


European Respiratory Journal | 2013

Validity of physical activity monitors during daily life in patients with COPD

Roberto Rabinovich; Zafeiris Louvaris; Yogini Raste; Daniel Langer; Hans Van Remoortel; Santiago Giavedoni; Chris Burtin; Eloisa Maria Gatti Regueiro; Ioannis Vogiatzis; Nicholas S. Hopkinson; Michael I. Polkey; Frederick Wilson; William MacNee; Klaas R. Westerterp; Thierry Troosters

Symptoms during physical activity and physical inactivity are hallmarks of chronic obstructive pulmonary disease (COPD). Our aim was to evaluate the validity and usability of six activity monitors in patients with COPD against the doubly labelled water (DLW) indirect calorimetry method. 80 COPD patients (mean±sd age 68±6 years and forced expiratory volume in 1 s 57±19% predicted) recruited in four centres each wore simultaneously three or four out of six commercially available monitors validated in chronic conditions for 14 consecutive days. A priori validity criteria were defined. These included the ability to explain total energy expenditure (TEE) variance through multiple regression analysis, using TEE as the dependent variable with total body water (TBW) plus several physical activity monitor outputs as independent variables; and correlation with activity energy expenditure (AEE) measured by DLW. The Actigraph GT3X (Actigraph LLC, Pensacola, FL, USA), and DynaPort MoveMonitor (McRoberts BV, The Hague, the Netherlands) best explained the majority of the TEE variance not explained by TBW (53% and 70%, respectively) and showed the most significant correlations with AEE (r=0.71, p<0.001 and r=0.70, p<0.0001, respectively). The results of this study should guide users in choosing valid activity monitors for research or for clinical use in patients with chronic diseases such as COPD. This study validates six activity monitors in the field against indirect calorimetry (DLW) in patients with COPD http://ow.ly/o9VIE


The Journal of Physiology | 2011

Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes

Ioannis Vogiatzis; Zafeiris Louvaris; Helmut Habazettl; Dimitris Athanasopoulos; Vasilis Andrianopoulos; Evgenia Cherouveim; Harrieth Wagner; Charis Roussos; Peter D. Wagner; Spyros Zakynthinos

Non‐technical summary  Exercise capacity is limited at high altitude where hypoxia (i.e. decreased amount of inspired oxygen resulting in decreased oxygen in the blood) is present, but it is unknown whether a reduction in the oxygen delivered to the brain constitutes the signal to the brain to prematurely terminate exercise. We show that during hypoxic exercise equivalent to exercise at ∼4000 m above sea‐level, the oxygen delivered to the brain during intense exercise is ∼60% less than that delivered to the brain at comparable exercise intensity at sea‐level. These results show that reduction in the oxygen delivered to the brain could constitute the signal to limit maximal exercise capacity in hypoxia, and help us understand better why exercise capacity is limited at high altitude. Moreover, a plausible mechanism of exercise limitation in patients who present decreased oxygen in the blood during exercise due to pulmonary and/or cardiac disease is revealed.


European Respiratory Journal | 2015

The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease

Elena Gimeno-Santos; Yogini Raste; Heleen Demeyer; Zafeiris Louvaris; Corina de Jong; Roberto Rabinovich; Nicholas S. Hopkinson; Michael I. Polkey; Ioannis Vogiatzis; Maggie Tabberer; Fabienne Dobbels; Nathalie Ivanoff; Willem I. de Boer; Thys van der Molen; Karoly Kulich; Ignasi Serra; Xavier Basagaña; Thierry Troosters; Milo A. Puhan; Niklas Karlsson; Judith Garcia-Aymerich

No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD. Physical activity was assessed in a 6-week, randomised, two-way cross-over, multicentre study using PROactive draft questionnaires (daily and clinical visit versions) and two activity monitors. Item reduction followed an iterative process including classical and Rasch model analyses, and input from patients and clinical experts. 236 COPD patients from five European centres were included. Results indicated the concept of physical activity in COPD had two domains, labelled “amount” and “difficulty”. After item reduction, the daily PROactive instrument comprised nine items and the clinical visit contained 14. Both demonstrated good model fit (person separation index >0.7). Confirmatory factor analysis supported the bidimensional structure. Both instruments had good internal consistency (Cronbachs α>0.8), test–retest reliability (intraclass correlation coefficient ≥0.9) and exhibited moderate-to-high correlations (r>0.6) with related constructs and very low correlations (r<0.3) with unrelated constructs, providing evidence for construct validity. Daily and clinical visit “PROactive physical activity in COPD” instruments are hybrid tools combining a short patient-reported outcome questionnaire and two activity monitor variables which provide simple, valid and reliable measures of physical activity in COPD patients. Both PROactive hybrid tools are simple, valid, and reliable measures of physical activity in COPD patients http://ow.ly/LJqP8


Thorax | 2017

Physical activity is increased by a 12-week semiautomated telecoaching programme in patients with COPD: a multicentre randomised controlled trial

Heleen Demeyer; Zafeiris Louvaris; Anja Frei; Roberto Rabinovich; C de Jong; Elena Gimeno-Santos; Matthias Loeckx; Sara Buttery; Noah Rubio; T. van der Molen; Nicholas S. Hopkinson; I. Vogiatzis; Milo A. Puhan; Judith Garcia-Aymerich; Michael I. Polkey; Thierry Troosters

Rationale Reduced physical activity (PA) in patients with COPD is associated with a poor prognosis. Increasing PA is a key therapeutic target, but thus far few strategies have been found effective in this patient group. Objectives To investigate the effectiveness of a 12-week semiautomated telecoaching intervention on PA in patients with COPD in a multicentre European randomised controlled trial. Methods 343 patients from six centres, encompassing a wide spectrum of disease severity, were randomly allocated to either a usual care group (UCG) or a telecoaching intervention group (IG) between June and December 2014. This 12-week intervention included an exercise booklet and a step counter providing feedback both directly and via a dedicated smartphone application. The latter provided an individualised daily activity goal (steps) revised weekly and text messages as well as allowing occasional telephone contacts with investigators. PA was measured using accelerometry during 1 week preceding randomisation and during week 12. Secondary outcomes included exercise capacity and health status. Analyses were based on modified intention to treat. Main results Both groups were comparable at baseline in terms of factors influencing PA. At 12 weeks, the intervention yielded a between-group difference of mean, 95% CI (lower limit – upper limit; ll-ul) +1469, 95% CI (971 to 1965) steps/day and +10.4, 95% CI (6.1 to 14.7) min/day moderate PA; favouring the IG (all p≤0.001). The change in 6-min walk distance was significantly different (13.4, 95% CI (3.40 to 23.5) m, p<0.01), favouring the IG. In IG patients, an improvement could be observed in the functional state domain of the clinical COPD questionnaire (p=0.03) compared with UCG. Other health status outcomes did not differ. Conclusions The amount and intensity of PA can be significantly increased in patients with COPD using a 12-week semiautomated telecoaching intervention including a step counter and an application installed on a smartphone. Trial registration number: NCT02158065.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Effect of helium breathing on intercostal and quadriceps muscle blood flow during exercise in COPD patients.

Ioannis Vogiatzis; Helmut Habazettl; A. Aliverti; Dimitris Athanasopoulos; Zafeiris Louvaris; Antonella LoMauro; Harrieth Wagner; Charis Roussos; Peter D. Wagner; Spyros Zakynthinos

Emerging evidence indicates that, besides dyspnea relief, an improvement in locomotor muscle oxygen delivery may also contribute to enhanced exercise tolerance following normoxic heliox (replacement of inspired nitrogen by helium) administration in patients with chronic obstructive pulmonary disease (COPD). Whether blood flow redistribution from intercostal to locomotor muscles contributes to this improvement currently remains unknown. Accordingly, the objective of this study was to investigate whether such redistribution plays a role in improving locomotor muscle oxygen delivery while breathing heliox at near-maximal [75% peak work rate (WR(peak))], maximal (100%WR(peak)), and supramaximal (115%WR(peak)) exercise in COPD. Intercostal and vastus lateralis muscle perfusion was measured in 10 COPD patients (FEV(1) = 50.5 ± 5.5% predicted) by near-infrared spectroscopy using indocyanine green dye. Patients undertook exercise tests at 75 and 100%WR(peak) breathing either air or heliox and at 115%WR(peak) breathing heliox only. Patients did not exhibit exercise-induced hyperinflation. Normoxic heliox reduced respiratory muscle work and relieved dyspnea across all exercise intensities. During near-maximal exercise, quadriceps and intercostal muscle blood flows were greater, while breathing normoxic heliox compared with air (35.8 ± 7.0 vs. 29.0 ± 6.5 and 6.0 ± 1.3 vs. 4.9 ± 1.2 ml·min(-1)·100 g(-1), respectively; P < 0.05; mean ± SE). In addition, compared with air, normoxic heliox administration increased arterial oxygen content, as well as oxygen delivery to quadriceps and intercostal muscles (from 47 ± 9 to 60 ± 12, and from 8 ± 1 to 13 ± 3 mlO(2)·min(-1)·100 g(-1), respectively; P < 0.05). In contrast, normoxic heliox had neither an effect on systemic nor an effect on quadriceps or intercostal muscle blood flow and oxygen delivery during maximal or supramaximal exercise. Since intercostal muscle blood flow did not decrease by normoxic heliox administration, blood flow redistribution from intercostal to locomotor muscles does not represent a likely mechanism of improvement in locomotor muscle oxygen delivery. Our findings might not be applicable to patients who hyperinflate during exercise.


Journal of Applied Physiology | 2012

Heliox increases quadriceps muscle oxygen delivery during exercise in COPD patients with and without dynamic hyperinflation

Zafeiris Louvaris; Spyros Zakynthinos; Andrea Aliverti; Helmut Habazettl; Maroula Vasilopoulou; Vasileios Andrianopoulos; Harrieth Wagner; Peter D. Wagner; Ioannis Vogiatzis

Some reports suggest that heliox breathing during exercise may improve peripheral muscle oxygen availability in patients with chronic obstructive pulmonary disease (COPD). Besides COPD patients who dynamically hyperinflate during exercise (hyperinflators), there are patients who do not hyperinflate (non-hyperinflators). As heliox breathing may differently affect cardiac output in hyperinflators (by increasing preload and decreasing afterload of both ventricles) and non-hyperinflators (by increasing venous return) during exercise, it was reasoned that heliox administration would improve peripheral muscle oxygen delivery possibly by different mechanisms in those two COPD categories. Chest wall volume and respiratory muscle activity were determined during constant-load exercise at 75% peak capacity to exhaustion, while breathing room air or normoxic heliox in 17 COPD patients: 9 hyperinflators (forced expiratory volume in 1 s = 39 ± 5% predicted), and 8 non-hyperinflators (forced expiratory volume in 1 s = 48 ± 5% predicted). Quadriceps muscle blood flow was measured by near-infrared spectroscopy using indocyanine green dye. Hyperinflators and non-hyperinflators demonstrated comparable improvements in endurance time during heliox (231 ± 23 and 257 ± 28 s, respectively). At exhaustion in room air, expiratory muscle activity (expressed by peak-expiratory gastric pressure) was lower in hyperinflators than in non-hyperinflators. In hyperinflators, heliox reduced end-expiratory chest wall volume and diaphragmatic activity, and increased arterial oxygen content (by 17.8 ± 2.5 ml/l), whereas, in non-hyperinflators, heliox reduced peak-expiratory gastric pressure and increased systemic vascular conductance (by 11.0 ± 2.8 ml·min(-1)·mmHg(-1)). Quadriceps muscle blood flow and oxygen delivery significantly improved during heliox compared with room air by a comparable magnitude (in hyperinflators by 6.1 ± 1.3 ml·min(-1)·100 g(-1) and 1.3 ± 0.3 ml O(2)·min(-1)·100 g(-1), and in non-hyperinflators by 7.2 ± 1.6 ml·min(-1)·100 g(-1) and 1.6 ± 0.3 ml O(2)·min(-1)·100 g(-1), respectively). Despite similar increase in locomotor muscle oxygen delivery with heliox in both groups, the mechanisms of such improvements were different: 1) in hyperinflators, heliox increased arterial oxygen content and quadriceps blood flow at similar cardiac output, whereas 2) in non-hyperinflators, heliox improved central hemodynamics and increased systemic vascular conductance and quadriceps blood flow at similar arterial oxygen content.


Journal of Applied Physiology | 2015

A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy

Ioannis Vogiatzis; Helmut Habazettl; Zafeiris Louvaris; Vasileios Andrianopoulos; Harrieth Wagner; Spyros Zakynthinos; Peter D. Wagner

Heterogeneity in the distribution of both blood flow (Q̇) and O2 consumption (V̇O2) has not been assessed by near-infrared spectroscopy in exercising normal human muscle. We used near-infrared spectroscopy to measure the regional distribution of Q̇ and V̇O2 in six trained cyclists at rest and during constant-load exercise (unloaded pedaling, 20%, 50%, and 80% of peak Watts) in both normoxia and hypoxia (inspired O2 fraction = 0.12). Over six optodes over the upper, middle, and lower vastus lateralis, we recorded 1) indocyanine green dye inflow after intravenous injection to measure Q̇; and 2) fractional tissue O2 saturation (StiO2) to estimate local V̇O2-to-Q̇ ratios (V̇o2/Q̇). Varying both exercise intensity and inspired O2 fraction provided a (directly measured) femoral venous O2 saturation range from about 10 to 70%, and a correspondingly wide range in StiO2. Mean Q̇-weighted StiO2 over the six optodes related linearly to femoral venous O2 saturation in each subject. We used this relationship to compute local muscle venous blood O2 saturation from StiO2 recorded at each optode, from which local V̇O2/Q̇ could be calculated by the Fick principle. Multiplying regional V̇O2/Q̇ by Q̇ yielded the corresponding local V̇O2. While six optodes along only in one muscle may not fully capture the extent of heterogeneity, relative dispersion of both Q̇ and V̇O2 was ∼0.4 under all conditions, while that for V̇O2/Q̇ was minimal (only ∼0.1), indicating in fit young subjects 1) a strong capacity to regulate Q̇ according to regional metabolic need; and 2) a likely minimal impact of heterogeneity on muscle O2 availability.


European Respiratory Journal | 2013

Cerebral cortex oxygen delivery and exercise limitation in patients with COPD

Ioannis Vogiatzis; Zafeiris Louvaris; Helmut Habazettl; Vasileios Andrianopoulos; Harrieth Wagner; Charis Roussos; Peter D. Wagner; Spyros Zakynthinos

In healthy humans, cerebral oxygen desaturation during exercise affects motor unit recruitment, while oxygen supplementation enhances cerebral oxygenation and work capacity. It remains unknown whether in patients with chronic obstructive pulmonary disease (COPD), the well-documented improvement in exercise tolerance with oxygen supplementation may also be partly due to the increase in cerebral oxygenation. Using near infrared spectroscopy, we measured both frontal cerebral cortex blood flow (CBF) using indocyanine green dye and cerebrovascular oxygen saturation (St,O2) in 12 COPD patients during constant-load exercise to exhaustion at 75% of peak capacity. Subjects exercised while breathing air, 100% oxygen or normoxic heliox, the latter two in balanced order. Time to exhaustion while breathing air was less than for either oxygen or heliox (mean±sem 394±35 versus 670±43 and 637±46 s, respectively). Under each condition, CBF increased from rest to exhaustion. At exhaustion, CBF was higher while breathing air and heliox than oxygen (30.9±2.3 and 31.3±3.5 versus 26.6±3.2 mL·min−1 per 100 g, respectively), compensating for the lower arterial oxygen content (Ca,O2) in air and heliox, and leading to similar cerebral cortex oxygen delivery (CQO2 for air was 5.3±0.4, for oxygen was 5.5±0.6 and for heliox was 5.6±1.0 mL O2 per min per 100 g). In contrast, end-exercise St,O2 was greater while breathing oxygen compared with air or heliox (67±4 versus 57±3 and 53±3%, respectively), reflecting Ca,O2 rather than CQO2. Prolonged time to exhaustion by breathing oxygen and heliox, despite these having a similar CQO2 to air, a lower St,O2 with heliox than oxygen, and yet similar endurance time and similar St,O2 in air and heliox despite greater endurance with heliox, do not support the hypothesis that an improvement in cerebral cortex oxygen availability plays a contributing role in increasing exercise capacity with oxygen or heliox in patients with COPD.

Collaboration


Dive into the Zafeiris Louvaris's collaboration.

Top Co-Authors

Avatar

Ioannis Vogiatzis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Ioannis Vogiatzis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Maroula Vasilopoulou

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Spyros Zakynthinos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Spyros Zakynthinos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Eleni Kortianou

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Thierry Troosters

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge