Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zahir Ali is active.

Publication


Featured researches published by Zahir Ali.


Genome Biology | 2015

CRISPR/Cas9-mediated viral interference in plants

Zahir Ali; Aala Abdulaziz Hussien Abulfaraj; A. M. Idris; Shawkat Ali; Manal Tashkandi; Magdy M. Mahfouz

BackgroundThe CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species.ResultsIn this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses.ConclusionsThese data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.


Plant Biotechnology Journal | 2015

RNA‐guided transcriptional regulation in planta via synthetic dCas9‐based transcription factors

Agnieszka Piatek; Zahir Ali; Hatoon Baazim; Lixin Li; Aala Abdulaziz Hussien Abulfaraj; Sahar Alshareef; Mustapha Aouida; Magdy M. Mahfouz

Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3::uidA targets in plant cells. Further, the dCas9:SRDX-mediated transcriptional repression of an endogenous gene. Thus, our results suggest that the synthetic transcriptional repressor (dCas9:SRDX) and activators (dCas9:EDLL and dCas9:TAD) can be used as endogenous transcription factors to repress or activate transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9 DNA-targeting platform can be used in plants as a functional genomics tool and for biotechnological applications.


Nature Communications | 2013

Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis

Woe-Yeon Kim; Zahir Ali; Hee Jin Park; Su Jung Park; Joon-Yung Cha; J. Pérez-Hormaeche; Francisco J. Quintero; Gilok Shin; Mi Ri Kim; Zhang Qiang; Li Ning; Hyeong Cheol Park; Sang Yeol Lee; Ray A. Bressan; José M. Pardo; Hans J. Bohnert; Dae-Jin Yun

Environmental challenges to plants typically entail retardation of vegetative growth and delay or cessation of flowering. Here we report a link between the flowering time regulator, GIGANTEA (GI), and adaptation to salt stress that is mechanistically based on GI degradation under saline conditions, thus retarding flowering. GI, a switch in photoperiodicity and circadian clock control, and the SNF1-related protein kinase SOS2 functionally interact. In the absence of stress, the GI:SOS2 complex prevents SOS2-based activation of SOS1, the major plant Na(+)/H(+)-antiporter mediating adaptation to salinity. GI overexpressing, rapidly flowering, plants show enhanced salt sensitivity, whereas gi mutants exhibit enhanced salt tolerance and delayed flowering. Salt-induced degradation of GI confers salt tolerance by the release of the SOS2 kinase. The GI-SOS2 interaction introduces a higher order regulatory circuit that can explain in molecular terms, the long observed connection between floral transition and adaptive environmental stress tolerance in Arabidopsis.


Molecular Plant | 2015

Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System

Zahir Ali; Aala Abdulaziz Hussien Abulfaraj; Lixin Li; Neha Ghosh; Marek J. Piatek; Ali Mahjoub; Mustapha Aouida; Agnieszka Piatek; Nicholas J. Baltes; Daniel F. Voytas; Savithramma P. Dinesh-Kumar; Magdy M. Mahfouz

Targeted genome editing in plants will not only facilitate functional genomics studies but also help to discover, expand, and create novel traits of agricultural importance (Pennisi, 2010). The most widely used approach for editing plant genomes involves generating targeted double-strand DNA breaks (DSBs) and harnessing the two main DSB repair pathways: imprecise non-homologous end joining and precise homology-directed repair (Voytas, 2013). Enzymes that specifically bind the user-selected genomic sequences to create DSBs can be generated de novo as synthetic bimodular proteins containing a DNA-binding module, engineered to bind a user-defined sequence, along with a DNA-cleaving module, capable of making DSBs.


Plant Physiology | 2012

TsHKT1;2, a HKT1 Homolog from the Extremophile Arabidopsis Relative Thellungiella salsuginea, Shows K+ Specificity in the Presence of NaCl

Zahir Ali; Hyeong Cheol Park; Akhtar Ali; Dong-Ha Oh; Rashid Aman; Anna Kropornicka; Hyewon Hong; Wonkyun Choi; Woo Sik Chung; Woe-Yeon Kim; Ray A. Bressan; Hans J. Bohnert; Sang Yeol Lee; Dae-Jin Yun

Cellular Na+/K+ ratio is a crucial parameter determining plant salinity stress resistance. We tested the function of plasma membrane Na+/K+ cotransporters in the High-affinity K+ Transporter (HKT) family from the halophytic Arabidopsis (Arabidopsis thaliana) relative Thellungiella salsuginea. T. salsuginea contains at least two HKT genes. TsHKT1;1 is expressed at very low levels, while the abundant TsHKT1;2 is transcriptionally strongly up-regulated by salt stress. TsHKT-based RNA interference in T. salsuginea resulted in Na+ sensitivity and K+ deficiency. The athkt1 mutant lines overexpressing TsHKT1;2 proved less sensitive to Na+ and showed less K+ deficiency than lines overexpressing AtHKT1. TsHKT1;2 ectopically expressed in yeast mutants lacking Na+ or K+ transporters revealed strong K+ transporter activity and selectivity for K+ over Na+. Altering two amino acid residues in TsHKT1;2 to mimic the AtHKT1 sequence resulted in enhanced sodium uptake and loss of the TsHKT1;2 intrinsic K+ transporter activity. We consider the maintenance of K+ uptake through TsHKT1;2 under salt stress an important component supporting the halophytic lifestyle of T. salsuginea.


Frontiers in Plant Science | 2016

Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean.

Sajid Mahmood; Ihsanullah Daur; Samir G. Al-Solaimani; Shakeel Ahmad; Mohamed H. Madkour; Muhammad Yasir; Heribert Hirt; Shawkat Ali; Zahir Ali

The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.


Trends in Plant Science | 2016

Engineering Plants for Geminivirus Resistance with CRISPR/Cas9 System

Syed Shan-e-Ali Zaidi; Shahid Mansoor; Zahir Ali; Manal Tashkandi; Magdy M. Mahfouz

The CRISPR/Cas9 system is an efficient genome-editing platform for diverse eukaryotic species, including plants. Recent work harnessed CRISPR/Cas9 technology to engineer resistance to geminiviruses. Here, we discuss opportunities, emerging developments, and potential pitfalls for using this technology to engineer resistance against single and multiple geminivirus infections in plants.


PLOS ONE | 2015

Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

Mustapha Aouida; Ayman Eid; Zahir Ali; Thomas J. Cradick; Ciaran Lee; Harshavardhan Deshmukh; Ahmed Atef; Dina B. AbuSamra; Samah Zeineb Gadhoum; Jasmeen S. Merzaban; Gang Bao; Magdy M. Mahfouz

The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.


Genome Biology | 2018

RNA virus interference via CRISPR/Cas13a system in plants

Rashid Aman; Zahir Ali; Haroon Butt; Ahmed Mahas; Fatimah R. Aljedaani; Muhammad Zuhaib Khan; Shouwei Ding; Magdy M. Mahfouz

BackgroundCRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single-stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants.ResultsCRISPR/Cas13a produces interference against green fluorescent protein (GFP)-expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. CRISPR RNA (crRNAs) targeting the HC-Pro and GFP sequences exhibit better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs.ConclusionsOur data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.


Plant Signaling & Behavior | 2013

Role of HKT1 in Thellungiella salsuginea, a model extremophile plant

Akhtar Ali; Hyeong Cheol Park; Rashid Aman; Zahir Ali; Dae-Jin Yun

Maintenance of the cytosolic Na+/K+ ratio under saline conditions is crucial for plants. HKT-type Na+ transporters play a key role in keeping low cytosolic Na+ concentrations thus retaining a low Na+/K+ ratio, that reduces Na+ toxicity and causing high salinity stress tolerance. Two HKT-type transporters, AtHKT1 from Arabidopsis and TsHKT1;2 from Thellungiella salsuginea, that share high DNA and protein sequence identities, are distinguished by fundamentally different ion selection and salinity stress behavior. On the level of transcription, TsHKT1;2 is dramatically induced upon salt stress, whereas AtHKT1 is downregulated. TsHKT1;2-RNAi lines show severe potassium deficiency and are also sensitive to high [Na+]. We have validated the ability of the TsHKT1;2 protein to act as an efficient K+ transporter in the presence of high [Na+] by expression in yeast cells. K+ specificity is based on amino acid differences in the pore of the transporter protein relative to AtHKT1.

Collaboration


Dive into the Zahir Ali's collaboration.

Top Co-Authors

Avatar

Magdy M. Mahfouz

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyeong Cheol Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Ayman Eid

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mustapha Aouida

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Aala Abdulaziz Hussien Abulfaraj

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Piatek

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lixin Li

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Manal Tashkandi

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Akhtar Ali

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge