Zahra Assouline
Necker-Enfants Malades Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zahra Assouline.
Human Mutation | 2011
Louise Galmiche; Valérie Serre; Marine Beinat; Zahra Assouline; Anne-Sophie Lebre; Dominique Chretien; Patrick Nietschke; Vladimir Benes; Nathalie Boddaert; Daniel Sidi; Francis Brunelle; Marlène Rio; Arnold Munnich; Agnès Rötig
By combining exome sequencing in conjunction with genetic mapping, we have identified the first mutation in large mitochondrial ribosomal protein MRPL3 in a family of four sibs with hypertrophic cardiomyopathy, psychomotor retardation, and multiple respiratory chain deficiency. Affected sibs were compound heterozygotes for a missense MRPL3 mutation (P317R) and a large‐scale deletion, inherited from the mother and the father, respectively. These mutations were shown to alter ribosome assembly and cause a mitochondrial translation deficiency in cultured skin fibroblasts resulting in an abnormal assembly of several complexes of the respiratory chain. This observation gives support to the view that exome sequencing combined with genetic mapping is a powerful approach for the identification of new genes of mitochondrial disorders. Hum Mutat 32:1225–1231, 2011. ©2011 Wiley Periodicals, Inc.
American Journal of Human Genetics | 2014
Robert Kopajtich; Thomas J. Nicholls; Joanna Rorbach; Metodi D. Metodiev; Peter Freisinger; Hanna Mandel; Arnaud Vanlander; Daniele Ghezzi; Rosalba Carrozzo; Robert W. Taylor; Klaus Marquard; Kei Murayama; Thomas Wieland; Thomas Schwarzmayr; Johannes A. Mayr; Sarah F. Pearce; Christopher A. Powell; Ann Saada; Akira Ohtake; Federica Invernizzi; Eleonora Lamantea; Ewen W. Sommerville; Angela Pyle; Patrick F. Chinnery; Ellen Crushell; Yasushi Okazaki; Masakazu Kohda; Yoshihito Kishita; Yoshimi Tokuzawa; Zahra Assouline
Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.
Biochimica et Biophysica Acta | 2012
Zahra Assouline; M. Jambou; Marlène Rio; Christine Bole-Feysot; P. de Lonlay; Christine Barnerias; Isabelle Desguerre; C. Bonnemains; C. Guillermet; Julie Steffann; Arnold Munnich; Jean-Paul Bonnefont; Agnès Rötig; Anne-Sophie Lebre
Isolated complex I deficiency is a frequent cause of respiratory chain defects in childhood. In this study, we report our systematic approach with blue native PAGE (BN-PAGE) to study mitochondrial respiratory chain assembly in skin fibroblasts from patients with Leigh syndrome and CI deficiency. We describe five new NDUFS4 patients with a similar and constant abnormal BN-PAGE profile and present a meta-analysis of the literature. All NDUFS4 mutations that have been tested with BN-PAGE result in a constant and similar abnormal assembly profile with a complete loss of the fully assembled complex I usually due to a truncated protein and the loss of its canonical cAMP dependent protein kinase phosphorylation consensus site. We also report the association of abnormal brain MRI images with this characteristic BN-PAGE profile as the hallmarks of NDUFS4 mutations and the first founder NDUFS4 mutations in the North-African population.
European Journal of Human Genetics | 2016
Marie Collet; Zahra Assouline; Damien Bonnet; Marlène Rio; Franck Iserin; Daniel Sidi; Alice Goldenberg; Caroline Lardennois; Metodi D. Metodiev; Birgit Haberberger; Tobias B. Haack; Arnold Munnich; Holger Prokisch; Agnès Rötig
Acyl-CoA dehydrogenase family, member 9 (ACAD9) mutation is a frequent, usually fatal cause of early-onset cardiac hypertrophy and mitochondrial respiratory chain complex I deficiency in early childhood. We retrospectively studied a series of 20 unrelated children with cardiac hypertrophy and isolated complex I deficiency and identified compound heterozygosity for missense, splice site or frame shift ACAD9 variants in 8/20 patients (40%). Age at onset ranged from neonatal period to 9 years and 5/8 died in infancy. Heart transplantation was possible in 3/8. Two of them survived and one additional patient improved spontaneously. Importantly, the surviving patients later developed delayed-onset neurologic or muscular symptoms, namely cognitive impairment, seizures, muscle weakness and exercise intolerance. Other organ involvement included proximal tubulopathy, renal failure, secondary ovarian failure and optic atrophy. We conclude that ACAD9 mutation is the most frequent cause of cardiac hypertrophy and isolated complex I deficiency. Heart transplantation in children surviving neonatal period should be considered with caution, as delayed-onset muscle and brain involvement of various severity may occur, even if absent prior to transplantation.
American Journal of Human Genetics | 2016
Laura Sánchez-Caballero; Benedetta Ruzzenente; Lucas Bianchi; Zahra Assouline; Giulia Barcia; Metodi D. Metodiev; Marlène Rio; Benoît Funalot; Mariël van den Brand; Sergio Guerrero-Castillo; Joery P. Molenaar; David A. Koolen; Ulrich Brandt; Richard J. Rodenburg; Leo Nijtmans; Agnès Rötig
Mitochondrial complex I deficiency results in a plethora of often severe clinical phenotypes manifesting in early childhood. Here, we report on three complex-I-deficient adult subjects with relatively mild clinical symptoms, including isolated, progressive exercise-induced myalgia and exercise intolerance but with normal later development. Exome sequencing and targeted exome sequencing revealed compound-heterozygous mutations in TMEM126B, encoding a complex I assembly factor. Further biochemical analysis of subject fibroblasts revealed a severe complex I deficiency caused by defective assembly. Lentiviral complementation with the wild-type cDNA restored the complex I deficiency, demonstrating the pathogenic nature of these mutations. Further complexome analysis of one subject indicated that the complex I assembly defect occurred during assembly of its membrane module. Our results show that TMEM126B defects can lead to complex I deficiencies and, interestingly, that symptoms can occur only after exercise.
Mitochondrion | 2012
Louise Galmiche; Valérie Serre; Marine Beinat; Raïssa Zossou; Zahra Assouline; Anne-Sophie Lebre; Florence Chretien; Ruthie Shenhav; Avraham Zeharia; Ann Saada; Vanessa Vedrenne; Nathalie Boddaert; Pascale de Lonlay; Marlène Rio; Arnold Munnich; Agnès Rötig
Multiple respiratory chain deficiencies represent a common cause of mitochondrial diseases. We report two novel GFM1 mutations in two unrelated patients with encephalopathy and liver failure respectively. The first patient had intrauterine growth retardation, seizures, encephalopathy and developmental delay. Brain MRI showed hypoplasia of the vermis and severe pontine atrophy of the brainstem that were similar to those reported in patients with mitochondrial translation deficiencies. The second patient had liver failure with hypoglycemia. Respiratory chain analysis showed a complex IV deficiency in muscle of both patients. A 10K SNP genotyping detected several regions of homozygosity in the two patients. In vitro translation deficiency prompted us to study genes involved in mitochondrial translation. Therefore, we sequenced the GFM1 gene, encoding the mitochondrial translation factor EFG1, included in a shared homozygous region and identified two different homozygous mutations (R671C and L398P). Modeling studies of EFG1 protein suggested that the R671C mutation disrupts an inter-subunit interface and could locally destabilize the mutant protein. The second mutation (L398P) disrupted the H-bond network in a rich-beta-sheet domain, and may have a dramatic effect on local structure. GFM1 mutations have been seldom reported and are associated with different clinical presentation. By modeling the structure of the protein and the position of the various mutations we suggest that the clinical phenotypes of the patients could be related to the localization of the mutations.
Molecular Genetics and Metabolism | 2012
Coralie Haudry; Pascale de Lonlay; Valérie Malan; Christine Bole-Feysot; Zahra Assouline; Solenn Pruvost; Anais Brassier; Jean-Paul Bonnefont; Arnold Munnich; Agnès Rötig; Anne-Sophie Lebre
We report maternal uniparental disomy of chromosome 2 (matUPD2) in a 9-month-old girl presenting with hepatocerebral mitochondrial DNA depletion syndrome. This patient was homozygous for the c.352C>T (p.Arg118Cys) mutation in DGUOK gene. The probands mother was heterozygous for the mutation was absent in DNA of the father. For proband, the absence of paternal contribution at the DGUOK locus prompted us to exclude intragenic DGUOK deletion of the paternal allele with Multiplex ligation-dependent probe amplification (MLPA) analysis. We also excluded non-paternity by studying various markers at different loci. Then we performed an analysis of copy number variations and absence of heterozygosity (AOH) on the proband DNA using high resolution oligonucleotides microarray. Several large regions of AOH with no copy number change were detected on chromosome 2 and one of these AOH regions encompassed DGUOK gene. These results were confirmed with haplotype analysis using polymorphic markers. Informative SNPs and microsatellites markers spanning the whole chromosome 2 showed a matUPD2 with heterodisomy and isodisomy regions, the absence of paternal allele and presence of two maternal alleles, with only one maternal allele on the region of DGUOK locus in 2p13.1. This is the first demonstration of matUPD2 with segmental isodisomy at 2p13.1 locus in hepatocerebral mitochondrial DNA depletion syndrome. The identification of UPD2 will impact genetic counseling for the probands parents. Because the recurrence risk for UPD2 is very low, the risk for disease in further offspring for this couple is negligible.
Human Mutation | 2018
Benedetta Ruzzenente; Zahra Assouline; Giulia Barcia; Marlène Rio; Nathalie Boddaert; Arnold Munnich; Agnès Rötig; Metodi D. Metodiev
Aminoacyl‐tRNA synthetases are ubiquitous enzymes, which universally charge tRNAs with their cognate amino acids for use in cytosolic or organellar translation. In humans, mutations in mitochondrial tRNA synthetases have been linked to different tissue‐specific pathologies. Mutations in the KARS gene, which encodes both the cytosolic and mitochondrial isoform of lysyl‐tRNA synthetase, cause predominantly neurological diseases that often involve deafness, but have also been linked to cardiomyopathy, developmental delay, and lactic acidosis. Using whole exome sequencing, we identified two compound heterozygous mutations, NM_001130089.1:c.683C>T p.(Pro228Leu) and NM_001130089.1:c.1438del p.(Leu480TrpfsX3), in a patient presenting with sensorineural deafness, developmental delay, hypotonia, and lactic acidosis. Nonsense‐mediated mRNA decay eliminated the truncated mRNA transcript, rendering the patient hemizygous for the missense mutation. The c.683C>T mutation was previously described, but its pathogenicity remained unexamined. Molecular characterization of patient fibroblasts revealed a multiple oxidative phosphorylation deficiency due to impaired mitochondrial translation, but no evidence of inhibition of cytosolic translation. Reintroduction of wild‐type mitochondrial KARS, but not the cytosolic isoform, rescued this phenotype confirming the disease‐causing nature of p.(Pro228Leu) exchange and demonstrating the mitochondrial etiology of the disease. We propose that mitochondrial translation deficiency is the probable disease culprit in this and possibly other patients with mutations in KARS.
American Journal of Human Genetics | 2018
Dorota Piekutowska-Abramczuk; Zahra Assouline; Lavinija Mataković; René G. Feichtinger; Eliška Koňaříková; Elżbieta Jurkiewicz; Piotr Stawiński; Mirjana Gusic; Andreas Koller; Agnieszka Pollak; Piotr Gasperowicz; Joanna Trubicka; Elżbieta Ciara; Katarzyna Iwanicka-Pronicka; Dariusz Rokicki; Sylvain Hanein; Saskia B. Wortmann; Wolfgang Sperl; Agnès Rötig; Holger Prokisch; Ewa Pronicka; Rafał Płoski; Giulia Barcia; Johannes A. Mayr
Respiratory chain complex I deficiency is the most frequently identified biochemical defect in childhood mitochondrial diseases. Clinical symptoms range from fatal infantile lactic acidosis to Leigh syndrome and other encephalomyopathies or cardiomyopathies. To date, disease-causing variants in genes coding for 27 complex I subunits, including 7 mitochondrial DNA genes, and in 11 genes encoding complex I assembly factors have been reported. Here, we describe rare biallelic variants in NDUFB8 encoding a complex I accessory subunit revealed by whole-exome sequencing in two individuals from two families. Both presented with a progressive course of disease with encephalo(cardio)myopathic features including muscular hypotonia, cardiac hypertrophy, respiratory failure, failure to thrive, and developmental delay. Blood lactate was elevated. Neuroimaging disclosed progressive changes in the basal ganglia and either brain stem or internal capsule. Biochemical analyses showed an isolated decrease in complex I enzymatic activity in muscle and fibroblasts. Complementation studies by expression of wild-type NDUFB8 in cells from affected individuals restored mitochondrial function, confirming NDUFB8 variants as the cause of complex I deficiency. Hereby we establish NDUFB8 as a relevant gene in childhood-onset mitochondrial disease.
American Journal of Human Genetics | 2018
Thatjana Gardeitchik; Miski Mohamed; Benedetta Ruzzenente; Daniela Karall; Sergio Guerrero-Castillo; Daisy Dalloyaux; Mariël van den Brand; Sanne van Kraaij; Ellyze van Asbeck; Zahra Assouline; Marlène Rio; Pascale de Lonlay; Sabine Scholl-Buergi; David F.G.J. Wolthuis; Alexander Hoischen; Richard J. Rodenburg; Wolfgang Sperl; Zsolt Urban; Ulrich Brandt; Johannes A. Mayr; Sunnie Wong; Arjan P.M. de Brouwer; Leo Nijtmans; Arnold Munnich; Agnès Rötig; Ron A. Wevers; Metodi D. Metodiev; Eva Morava