Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zakhar O. Shenkarev is active.

Publication


Featured researches published by Zakhar O. Shenkarev.


FEBS Journal | 2006

Conformation and mode of membrane interaction in cyclotides

Zakhar O. Shenkarev; Kirill D. Nadezhdin; Vladimir A. Sobol; Alexander G. Sobol; Lars Skjeldal; Alexander S. Arseniev

Cyclotides are a family of bioactive plant peptides that are characterized by a circular protein backbone and three conserved tightly packed disulfide bonds. The antimicrobial and hemolytic properties of cyclotides, along with the relative hydrophobicity of the peptides, point to the biological membrane as a target for cyclotides. To assess the membrane‐induced conformation and orientation of cyclotides, the interaction of the Möbius cyclotide, kalata B1, from the African perennial plant Oldenlandia affinis, with dodecylphosphocholine micelles was studied using NMR spectroscopy. Under conditions where the cyclotide formed a well‐defined complex with micelles, the spatial structure of kalata B1 was calculated from NOE and J couplings data, and the model for the peptide–micelle complex was built using 5‐ and 16‐doxylstearate relaxation probes. The binding of divalent cations to the peptide–micelle complex was quantified by Mn2+ titration. The results show that the peptide binds to the micelle surface, with relatively high affinity, via two hydrophobic loops (loop 5, Trp19–Val21; and loop6, Leu27–Val29). The charged residues (Glu3 and Arg24), along with the cation‐binding site (near Glu3) are segregated on the other side of the molecule and in contact with polar head groups of detergent. The spatial structure of kalata B1 is only slightly changed during incorporation into micelles and represents a distorted triple‐stranded β‐sheet cross‐linked by a cystine knot. Detailed structural analysis and comparison with other knottins revealed structural conservation of the two‐disulfide motif in cyclic and acyclic peptides. The results thus obtained provide the first model for interaction of cyclotides with membranes and permit consideration of the cyclotides as membrane‐active cationic antimicrobial peptides.


Biochimica et Biophysica Acta | 2012

Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: Comparison with detergent micelles, bicelles and liposomes

Ekaterina N. Lyukmanova; Zakhar O. Shenkarev; N.F. Khabibullina; Gelina S. Kopeina; Mikhail A. Shulepko; Alexander S. Paramonov; Konstantin S. Mineev; R. V. Tikhonov; L. N. Shingarova; L. E. Petrovskaya; D. A. Dolgikh; A. S. Arseniev; M. P. Kirpichnikov

Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.


FEBS Letters | 1999

NMR spatial structure of α-conotoxin ImI reveals a common scaffold in snail and snake toxins recognizing neuronal nicotinic acetylcholine receptors1

Innokenty V. Maslennikov; Zakhar O. Shenkarev; Maxim N. Zhmak; Vadim T. Ivanov; Christoph Methfessel; Victor I. Tsetlin; Alexander S. Arseniev

A 600 MHz NMR study of α‐conotoxin ImI from Conus imperialis, targeting the α7 neuronal nicotinic acetylcholine receptor (nAChR), is presented. ImI backbone spatial structure is well defined basing on the NOEs, spin‐spin coupling constants, and amide protons hydrogen‐deuterium exchange data: rmsd of the backbone atom coordinates at the 2–12 region is 0.28 Å in the 20 best structures. The structure is described as a type I β‐turn (positions 2–5) followed bya distorted helix (positions 5–11). Similar structural psattern can be found in all neuronal‐specific α‐conotoxins. Highly mobile side chains of the Asp‐5, Arg‐7 and Trp‐10 residues form a single site for ImI binding to the α7 receptor. When depicted with opposite directions of the polypeptide chains, the ImI helix and the tip of the central loop of long chain snake neurotoxins demonstrate a common scaffold and similar positioning of the functional side chains, both of these structural elements appearing essential for binding to the neuronal nAChRs.


Journal of the American Chemical Society | 2010

NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating.

Zakhar O. Shenkarev; Alexander S. Paramonov; Ekaterina N. Lyukmanova; L. N. Shingarova; Sergei A. Yakimov; Maxim A. Dubinnyi; Vladimir Chupin; M. P. Kirpichnikov; Marcel J. J. Blommers; Alexander S. Arseniev

The structure and dynamics of the isolated voltage-sensing domain (VSD) of the archaeal potassium channel KvAP was studied by high-resolution NMR. The almost complete backbone resonance assignment and partial side-chain assignment of the (2)H,(13)C,(15)N-labeled VSD were obtained for the protein domain solubilized in DPC/LDAO (2:1) mixed micelles. Secondary and tertiary structures of the VSD were characterized using secondary chemical shifts and NOE contacts. These data indicate that the spatial structure of the VSD solubilized in micelles corresponds to the structure of the domain in an open state of the channel. NOE contacts and secondary chemical shifts of amide protons indicate the presence of tightly bound water molecule as well as hydrogen bond formation involving an interhelical salt bridge (Asp62-R133) that stabilizes the overall structure of the domain. The backbone dynamics of the VSD was studied using (15)N relaxation measurements. The loop regions S1-S2 and S2-S3 were found mobile, while the S3-S4 loop (voltage-sensor paddle) was found stable at the ps-ns time scale. The moieties of S1, S2, S3, and S4 helices sharing interhelical contacts (at the level of the Asp62-R133 salt bridge) were observed in conformational exchange on the micros-ms time scale. Similar exchange-induced broadening of characteristic resonances was observed for the VSD solubilized in the membrane of lipid-protein nanodiscs composed of DMPC, DMPG, and POPC/DOPG lipids. Apparently, the observed interhelical motions represent an inherent property of the VSD of the KvAP channel and can play an important role in the voltage gating.


Journal of the American Chemical Society | 2008

Lipid-protein nanoscale bilayers: a versatile medium for NMR investigations of membrane proteins and membrane-active peptides.

Ekaterina N. Lyukmanova; Zakhar O. Shenkarev; Alexander S. Paramonov; Alexander G. Sobol; Tatiana V. Ovchinnikova; Vladimir Chupin; M. P. Kirpichnikov; Marcel J. J. Blommers; Alexander S. Arseniev

In the present Communication we demonstrate the possibility to use high-resolution NMR for the investigation of membrane proteins in reconstituted high-density lipoprotein (rHDL) particles. The rHDL particles are nanoscale phospholipid bilayers wrapped around by a dimer of apolipoprotein A-1 (Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Nano Lett. 2002, 2, 853−856). In contrast to the commonly used spherical micelles, the rHDL particles incorporate a lipid bilayer like in biological membranes. These particles still undergo isotropic motion on the NMR time scale, providing the application of high-resolution NMR spectroscopy of the peptides and proteins embedded into their bilayer. As an example, the topology of the membrane-active peptide Antiamoebin-I in the bilayer of the rHDL particles was determined by using the lipid-soluble relaxation probe technique.


Journal of Biological Chemistry | 2011

NMR Structure and Action on Nicotinic Acetylcholine Receptors of Water-soluble Domain of Human LYNX1

Ekaterina N. Lyukmanova; Zakhar O. Shenkarev; Mikhail A. Shulepko; Konstantin S. Mineev; D D'Hoedt; Igor E. Kasheverov; Sergey Yu. Filkin; A.P Krivolapova; Helena Janickova; Dolezal; D. A. Dolgikh; A. S. Arseniev; Daniel Bertrand; Victor I. Tsetlin; M. P. Kirpichnikov

Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5–30 μm, ws-LYNX1 competed with 125I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μm ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μm caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.


Journal of Inorganic Biochemistry | 2008

Divalent cation coordination and mode of membrane interaction in cyclotides: NMR spatial structure of ternary complex Kalata B7/Mn2+/DPC micelle

Zakhar O. Shenkarev; Kirill D. Nadezhdin; Ekaterina N. Lyukmanova; Vladimir A. Sobol; Lars Skjeldal; Alexander S. Arseniev

The cyclotides are the family of hydrophobic bioactive plant peptides, characterized by a circular protein backbone and three knot forming disulfide bonds. It is believed that membrane activity of the cyclotides underlines their antimicrobial, cytotoxic and hemolytic properties, but the specific interactions with divalent cations can be also involved. To assess the mode of membrane interaction and divalent cation coordination in cyclotides, the spatial structure of the Möbius cyclotide Kalata B7 from the African perennial plant Oldenlandia affinis was determined in the presence of anisotropic membrane mimetic (dodecylphosphocholine micelles). The model of peptide/cation/micelle complex was built using 5-doxylstearate and Mn2+ relaxation probes. Results show that the peptide binds to the micelle surface with relatively high affinity by two hydrophobic loops (loop 2 - Thr6-Leu7 and loop 5 - Trp19-Ile21). The partially hydrated divalent cation is coordinated by charged side-chain of Glu3, aromatic side chain of Tyr11 and free carbonyls of Thr4 and Thr9, and is located in direct contact with the polar head-groups of detergent. The comparison with data about other cyclotides indicates that divalent cation coordination is the invariant property of all cyclotides, but the mode of peptide/membrane interactions is varied. Probably, the specific cation/peptide interactions play a major, but yet not known, role in the biological activity of the cyclotides.


Biochemistry | 2009

Lipid-protein nanodiscs: Possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides

Zakhar O. Shenkarev; Ekaterina N. Lyukmanova; O. I. Solozhenkin; I. E. Gagnidze; Oksana V. Nekrasova; V. V. Chupin; Andrey A. Tagaev; Zoya A. Yakimenko; T. V. Ovchinnikova; M. P. Kirpichnikov; A. S. Arseniev

High-resolution NMR is shown to be applicable for investigation of membrane proteins and membrane-active peptides embedded into lipid-protein nanodiscs (LPNs). 15N-Labeled K+-channel from Streptomyces lividans (KcsA) and the antibiotic antiamoebin I from Emericellopsis minima (Aam-I) were embedded in LPNs of different lipid composition. Formation of stable complexes undergoing isotropic motion in solution was confirmed by size-exclusion chromatography and 31P-NMR spectroscopy. The 2D 1H-15N-correlation spectra were recorded for KcsA in the complex with LPN containing DMPC and for Aam-I in LPNs based on DOPG, DLPC, DMPC, and POPC. The spectra recorded were compared with those in detergent-containing micelles and small bicelles commonly used in high-resolution NMR spectroscopy of membrane proteins. The spectra recorded in LPN environments demonstrated similar signal dispersion but significantly increased 1HN line width. The spectra of Aam-I embedded in LPNs containing phosphatidylcholine showed significant selective line broadening, thus suggesting exchange process(es) between several membrane-bound states of the peptide. 15N relaxation rates were measured to obtain the effective rotational correlation time of the Aam-I molecule. The obtained value (∼40 nsec at 45°C) is indicative of additional peptide motions within the Aam-I/LPN complex.


Biophysical Journal | 2002

Spatial structure of zervamicin IIB bound to DPC micelles: implications for voltage-gating.

Zakhar O. Shenkarev; Tamara A. Balashova; Roman G. Efremov; Zoya A. Yakimenko; T. V. Ovchinnikova; Jan Raap; A. S. Arseniev

Zervamicin IIB is a 16-amino acid peptaibol that forms voltage-dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. The spatial structure of zervamicin IIB bound to dodecylphosphocholine micelles was studied by nuclear magnetic resonance spectroscopy. The set of 20 structures obtained has a bent helical conformation with a mean backbone root mean square deviation value of approximately 0.2 A and resembles the structure in isotropic solvents (Balashova et al., 2000. NMR structure of the channel-former zervamicin IIB in isotropic solvents. FEBS Lett 466:333-336). The N-terminus represents an alpha-helix, whereas the C-terminal part has a mixed 3(10)/alpha(R) hydrogen-bond pattern. In the anisotropic micelle environment, the bending angle on Hyp10 (23 degrees) is smaller than that (47 degrees) in isotropic solvents. In the NOESY (Nuclear Overhauser Effect Spectroscopy) spectra, the characteristic attenuation of the peptide signals by 5- and 16-doxylstearate relaxation probes indicates a peripheral mode of the peptaibol binding to the micelle with the N-terminus immersed slightly deeper into micelle interior. Analysis of the surface hydrophobicity reveals that the zervamicin IIB helix is amphiphilic and well suited to formation of a tetrameric transmembrane bundle, according to the barrel-stave mechanism. The results are discussed in a context of voltage-driven peptaibol insertion into membrane.


FEBS Letters | 2000

NMR structure of the channel‐former zervamicin IIB in isotropic solvents

Tamara A. Balashova; Zakhar O. Shenkarev; Andrey A. Tagaev; T. V. Ovchinnikova; Jan Raap; Alexander S. Arseniev

Spatial structure of the membrane channel‐forming hexadecapeptide, zervamicin IIB, was studied by NMR spectroscopy in mixed solvents of different polarity ranging from CDCl3/CD3OH (9:1, v/v) to CD3OH/H2O (1:1, v/v). The results show that in all solvents used the peptide has a very similar structure that is a bent amphiphilic helix with a mean backbone root mean square deviation (rmsd) value of ca. 0.3 Å. Side chains of Trp1, Ile2, Gln3, Ile5 and Thr6 are mobile. The results are discussed in relation to the validity of the obtained structure to serve as a building block of zervamicin IIB ion channels.

Collaboration


Dive into the Zakhar O. Shenkarev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. A. Dolgikh

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. S. Arseniev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Victor I. Tsetlin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge