Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zamir K. Punja is active.

Publication


Featured researches published by Zamir K. Punja.


Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 2001

Genetic engineering of plants to enhance resistance to fungal pathogensa review of progress and future prospects

Zamir K. Punja

Recent applications of techniques in plant molecular biology and biotechnology to the study of host–pathogen interactions have resulted in the identification and cloning of numerous genes involved in the defense responses of plants following pathogen infection. These include: genes that express proteins, peptides, or antimicrobial compounds that are directly toxic to pathogens or that reduce their growth in situ; gene products that directly inhibit pathogen virulence products or enhance plant structural defense genes, that directly or indirectly activate general plant defense responses; and resistance genes involved in the hypersensitive response and in the interactions with avirulence factors. The introduction and expression of these genes, as well as of antimicrobial genes from nonplant sources, in a range of transgenic plant species have shown that the development of fungal pathogens can be significantly reduced. The extent of disease reduction varies with the strategy employed as well as with the characteristics of the fungal pathogen, and disease control has never been complete. Manipulation of salicylic acid, ethylene, and cytokinin levels in transgenic plants have provided some interesting results with regard to enhanced disease tolerance or susceptibility. The complex interactions among the expressed gene product, plant species, and fungal pathogen indicate that the response of transgenic plants cannot be readily predicted. Combinations of defense gene products have shown considerably more promise in reducing disease than single-transgene introductions. The use of tissue-specific or pathogen-inducible promoters, and the engineered expression of resistance genes, synthetic antimicrobial peptides, and elicitor molecules that induce defense responses have the potential to provide commercially useful broad-spectrum disease resistance in the not-too-distant future. The issues and challenges that will need to be addressed prior to the widespread utilization of these transgenic plants are highlighted.


Phytopathology | 1998

Genetic Change Within Populations of Phytophthora infestans in the United States and Canada During 1994 to 1996: Role of Migration and Recombination

Stephen B. Goodwin; Christine D. Smart; Robert W. Sandrock; Kenneth L. Deahl; Zamir K. Punja; William E. Fry

ABSTRACT Dramatic changes occurred within populations of Phytophthora infestans in the United States and Canada from 1994 through 1996. Occurrence of the US-8 genotype, detected rarely during 1992 and 1993, increased rapidly and predominated in most regions during 1994 through 1996. US-7, which infected both potato and tomato and made up almost 50% of the sample during 1993, was detected only rarely among 330 isolates from the United States analyzed during 1994. It was not detected at all in more limited samples from 1996. Thus, ability to infect both potato and tomato apparently did not increase the fitness of this genotype relative to US-8, as predicted previously. US-1, the previously dominant genotype throughout the United States and Canada, made up 8% or less of the samples analyzed during 1994 through 1996. A few additional genotypes were detected, which could indicate the beginnings of sexual reproduction of P. infestans within the United States and Canada. However, clonal reproduction still predominated in all locations sampled; opportunities for sexual reproduction probably were limited, because the A1 and A2 mating types usually were separated geographically. The high sensitivity of the US-1 genotype to the fungicide metalaxyl also could have reduced opportunities for contact between the mating types in fields where this compound was applied. The previous correlation between metalaxyl sensitivity and genotype was confirmed and extended to a new genotype, US-17: all US-1 isolates tested were sensitive; all isolates of the US-7, US-8, and US-17 genotypes tested to date have been resistant. Isolates of P. capsici and P. erythroseptica, two other species often found on tomato and potato, could be easily distinguished from each other and from P. infestans using a simple allozyme assay for the enzyme glucose-6-phosphate isomerase. This technique could be useful for rapid identification of species, in addition to genotype of P. infestans. It generally was not possible to predict which genotypes would be present in a location from 1 year to the next. Long-distance movement of US-8 in seed tubers was documented, and this was probably the primary means for the rapid spread of this genotype from 1993 through 1996.


Trends in Biotechnology | 2003

Using fungi and yeasts to manage vegetable crop diseases

Zamir K. Punja; R.S. Utkhede

Vegetable crops are grown worldwide as a source of nutrients and fiber in the human diet. Fungal plant pathogens can cause devastation in these crops under appropriate environmental conditions. Vegetable producers confronted with the challenges of managing fungal pathogens have the opportunity to use fungi and yeasts as biological control agents. Several commercially available products have shown significant disease reduction through various mechanisms to reduce pathogen development and disease. Production of hydrolytic enzymes and antibiotics, competition for plant nutrients and niche colonization, induction of plant host defense mechanisms, and interference with pathogenicity factors in the pathogen are the most important mechanisms. Biotechnological techniques are becoming increasingly valuable to elucidate the mechanisms of action of fungi and yeasts and provide genetic characterization and molecular markers to monitor the spread of these agents.


Plant Cell Reports | 2007

Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens

J. Jayaraj; Zamir K. Punja

Two pathogenesis-related (PR) protein genes consisting of a barley chitinase (chi-2) and a wheat lipid-transfer-protein (ltp) were introduced singly and in combination into carrot plants via Agrobacterium-mediated transformation using the phosphinothricin acetyl transferase (bar) gene as a selectable marker. Over 75% of regenerated plants were confirmed to be positive for the transgenes by PCR and RT-PCR and were resistant to the herbicide Liberty (0.2%, v/v). Northern analysis and immunoblotting confirmed the expression of the transgenes in about 70% of the plants, with variable expression levels among individual lines. Southern analysis revealed from one to three copies of each transgene. Transgenic plants were inoculated with two necrotrophic foliar fungal pathogens, Alternaria radicicola and Botrytis cinerea, and showed significantly higher resistance when both PR genes were expressed compared to single-gene transformants. The level of disease reduction in plants expressing both genes was 95% for Botrytis and 90% for Alternaria infection compared to 40–50% for single-gene transformants. The chi2 and ltp genes could be deployed in combination in other crop plants to significantly enhance resistance to necrotrophic fungal pathogens.


European Journal of Plant Pathology | 1996

Evaluation of plant growth-promoting rhizobacteria for biological control of pythium root rot of cucumbers grown in rockwool and effects on yield

M. McCullagh; R.S. Utkhede; James G. Menzies; Zamir K. Punja; Timothy C. Paulitz

Three strains ofPseudomonas fluorescens (63-49, 63-28, and 15), one strain ofPseudomonas corrugata (13) and one strain ofSerratia plymuthica (R1GC4) were tested on rockwool-grown cucumbers for their ability to reduce Pythium root-rot caused byPythium aphanidermatum. These strains were previously selected for biocontrol ability from collections of >4000 bacteria. Strains 63-49 and 63-28 were tested on cucumber plants grown in rockwool in two replicatedPythium-inoculated trials conducted in British Columbia (B.C). Another inoculated, replicated trial was conducted in Quebec with all five strains. Cucumber yields (fruit number and weight) were measured over a ten-week harvest period. Strain 63-49 caused an early promotion of plant growth and increased cucumber yields at early harvests. No measurable effect ofPythium inoculation on disease development was observed in the Quebec trial, due to unfavourable cool weather. However, 63-49 significantly increased the total number of cucumbers (12%) and cucumber weight (18%), compared to the non-treated control. Strains 13, 15 and R1GC4 slightly increased the cumulative cucumber yields, but strain 63-28 had no effect. In the B.C. trial, inoculation withP. aphanidermatum reduced the number and weight of cucumbers by 27%. Treatments ofPythium-inoculated cucumbers with 63-49 significantly increased fruit number and weight by 18%, compared to thePythium-inoculated control. Strain 63-28 increased the cumulative number of cucumbers over time, compared to thePythium-inoculated control, but the increase was less than with 63-49. The use ofPseudomonas spp. in rockwool-grown cucumbers can increase yields, both in the presence and absence of Pythium root rot, and with variable seasonal conditions and disease pressures.


Planta | 2009

Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene

Owen Wally; Jayaraman Jayaraj; Zamir K. Punja

The development of transgenic plants highly resistant to a range of pathogens using traditional signal gene expression strategies has been largely ineffective. Modification of systemic acquired resistance (SAR) through the overexpression of a controlling gene such as NPR1 (non-expressor of PR genes) offers an attractive alternative for augmenting the plants innate defense system. The Arabidopsis (At) NPR1 gene was successfully introduced into ‘Nantes Coreless’ carrot under control of a CaMV 35S promoter and two independent transgenic lines (NPR1-I and NPR1-XI) were identified by Southern and Northern blot hybridization. Both lines were phenotypically normal compared with non-transformed carrots. Northern analysis did not indicate constitutive or spontaneous induction in carrot cultures of SAR-related genes (DcPR-1, 2, 4, 5 or DcPAL). The duration and intensity of expression of DcPR-1, 2 and 5 genes were greatly increased compared with controls when the lines were treated with purified cell wall fragments of Sclerotinia sclerotiorum as well as with 2,6-dichloroisonicotinic acid. The two lines were challenged with the necrotrophic pathogens Botrytiscinerea, Alternaria radicina and S. sclerotiorum on the foliage and A. radicina on the taproots. Both lines exhibited 35–50% reduction in disease symptoms on the foliage and roots when compared with non-transgenic controls. Leaves challenged with the biotrophic pathogen Erysiphe heraclei or the bacterial pathogen Xanthomonas hortorum exhibited 90 and 80% reduction in disease development on the transgenic lines, respectively. The overexpression of the SAR controlling master switch in carrot tissues offers the ability to control a wide range of different pathogens, for which there is currently little genetic resistance available.


Phytopathology | 2005

Factors Influencing Development of Root Rot on Ginseng Caused by Cylindrocarpon destructans

Mahfuzur Rahman; Zamir K. Punja

ABSTRACT The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot (disappearing root rot) in many ginseng production areas in Canada. A total of 80 isolates of C. destructans were recovered from diseased roots in a survey of ginseng gardens in British Columbia from 2002-2004. Among these isolates, 49% were classified as highly virulent (causing lesions on unwounded mature roots) and 51% were weakly virulent (causing lesions only on previously wounded roots). Pectinase and polyphenoloxidase enzymes were produced in vitro by C. destructans isolates when they were grown on pectin and phenol as a substrate, respectively. However, highly virulent isolates produced significantly (P < 0.001) higher enzyme levels compared with weakly virulent isolates. Histopathological studies of ginseng roots inoculated with a highly virulent isolate revealed direct hyphal penetration through the epidermis, followed by intracellular hyphal growth in the cortex. Subsequent cell disintegration and accumulation of phenolic compounds was observed. Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at 18 and 21 degrees C, respectively and there was no growth at 35 degrees C. Mycelial mass production was significantly (P </= 0.01) lower at pH 7.0 compared with pH 5.0. To study the effects of pH (5.0 and 7.0) and wounding on disease development, ginseng roots were grown hydroponically in Hoaglands solution. Lesions were significantly larger (P < 0.001) at pH 5.0 compared with pH 7.0 and wounding enhanced disease by a highly virulent isolate at both pHs. In artificially infested soil, 2-year-old ginseng roots were most susceptible to Cylindrocarpon root rot among all root ages tested (1 to 4 years) when evaluated using a combined scale of disease incidence and severity. Root rot severity was significantly (P < 0.002) enhanced by increasing the inoculum density from 3.45 x 10(2) CFU/g of soil to 1.86 x 10(3) CFU/g of soil. Disease severity was higher at 20 degrees C compared with 15 and 25 degrees C and at -0.02 MPa soil moisture compared with -0.005 and -0.001 MPa. A significant interaction between soil moisture and temperature was observed for root rot severity.


GM crops & food | 2010

Genetic engineering for increasing fungal and bacterial disease resistance in crop plants

Owen Wally; Zamir K. Punja

We review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies.


Methods of Molecular Biology | 2006

Carrot ( Daucus carota L.)

Owen Wally; Jayaraj Jayaraman; Zamir K. Punja

Plants are susceptible to infection by a broad range of fungal pathogens. A range of proteins have been evaluated that can enhance tolerance to these pathogens by heterologous expression in transgenic carrot tissues. The protocols for carrot transformation with Arabidopsis NPR1 (Non-Expressor of Pathogenesis-Related Proteins 1) are described in this chapter, using the herbicide resistance gene bar, which encodes phosphinothricin acetyltransferase, as a selectable marker. In this protocol, petiole segments (0.5-1.0 cm long) from aseptically grown carrot seedlings are exposed to Agrobacterium tumefaciens strain LBA4404 for 10-30 min and cocultivated for 2-3 days. Herbicide selection is then imposed for 8-12 weeks on a series of different tissue culture media until embryogenic calli are produced. The transfer of the embryogenic calli to hormone-free medium results in embryo development which eventually gives rise to transgenic plantlets. Embryogenic calli can also be propagated in suspension cultures. This protocol has yielded transgenic carrot plants with defined T-DNA inserts at the rate of between 1 and 3 Southern-positive independent events out of 100.


Plant Cell Reports | 1996

Transformation of pickling cucumber with chitinase-encoding genes using Agrobacterium tumefaciens.

S. H. T. Raharjo; M. O. Hernandez; Y. Y. Zhang; Zamir K. Punja

SummaryTransformation of cucumber cv. Endeavor was attempted using three Agrobacterium tumefaciens strains (a supervirulent leucinopine type, an octopine type and a nopaline type), each harbouring one of three binary vectors which contained an acidic chitinase gene from petunia, and basic chitinase genes from tobacco and bean, respectively, driven by the CaMV 35S promoter. Petiole explants were inoculated with a bacterial suspension (108 cells·ml−1), cocultivated for 48–96 h and placed on Murashige and Skoog (MS) medium with 5.0 μM each of 2,4-D and BA, 50 mg·l−1 kanamycin and 500 mg·l−1 carbenicillin. The frequency of embryogenic callus formation ranged from 0 to 12%, depending on strains/vectors used and length of cocultivation, with the highest being obtained using the leucinopine strain with petunia acidic chitinase gene. The kanamycin-resistant embryogenic calli were used to initiate suspension cultures (in liquid MS medium with 1.0/1.0 μM 2,4-D/BA, 50 mg·l−1 kanamycin) for multiplication of embryogenic cell aggregates. Upon plating of cell aggregates onto solid MS medium with 1.0/1.0 μM NAA/BA and 50 mg·l−1 kanamycin, calli continued to grow and later differentiated into plantlets. Transformation by the leucinopine strain and all three vectors was confirmed by PCR amplification of the NPT II gene in transgenic calli and plants, in addition to Southern analysis. Expression of the acidic chitinase gene (from petunia) and both basic chitinase genes (from tobacco and bean) in different transgenic cucumber lines was confirmed by Western analyses.

Collaboration


Dive into the Zamir K. Punja's collaboration.

Top Co-Authors

Avatar

A. Wan

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen Wally

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Jayaraj

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge