Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zang Hee Lee is active.

Publication


Featured researches published by Zang Hee Lee.


Bone | 2002

The phosphatidylinositol 3-Kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation

S.E. Lee; Kyung Mi Woo; S.Y. Kim; Hyunjong Kim; K. Kwack; Zang Hee Lee; Hong-Hee Kim

Phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinases (MAPKs) have been implicated in diverse cellular functions, including proliferation, migration, and survival. In this study, we examined the involvement of these kinases in osteoclast differentiation by employing specific inhibitors of the kinases. The osteoclast differentiation was assessed in three different culture systems: a coculture of mouse bone marrow cells with mouse calvarial osteoblasts, a mouse bone marrow cell culture in the presence of receptor activator of NF-kappaB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and a culture of bone-resident osteoclast precursor cells driven by RANKL and M-CSF. LY294002, a specific inhibitor of PI 3-kinase, potently inhibited osteoclast differentiation in all culture systems when assessed by both tartrate-resistant acid phosphatase (TRAP) staining and dentine resorption assays. Inhibition of p38 MAPK by SB202190 resulted in a strong suppression in the exogenous RANKL dependent mouse bone marrow and bone resident precursor cell cultures. Another MAPK pathway inhibitor (PD98059), which blocks the activation of extracellular signal-regulated kinase (ERK) by inhibiting the upstream kinase MAPK-ERK kinase (MEK) 1, exerted an inhibitory effect on osteoclast differentiation only at the highest concentration tested (30 micromol/L) in many cases. Whether the signaling pathways involving these kinases are activated by RANKL was also examined. The RANKL-stimulated phosphorylation of Akt, a downstream target of PI 3-kinase, and that of ERK were observed. RANKL also stimulated the activity of p38. These results suggest that PI 3 kinase, p38, and ERK play roles in osteoclast differentiation, at least in part, by participating in RANKL signaling.


Cell Death & Differentiation | 2009

IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling

Hao Huang; Hyun-Man Kim; Eun-Ju Chang; Zang Hee Lee; Hwang Sj; Hong-Hee Kim; Yun Sun Lee; Hyosang Kim

Interleukin-17 (IL-17) is a cytokine secreted primarily by TH-17 cells. Although IL-17 is primarily associated with the induction of tissue inflammation, the other biological roles of IL-17, including non-immune functions, have yet to be thoroughly explored. Here, we report that T-cell-produced IL-17 can induce proliferation of human bone marrow-derived mesenchymal stem cells (hMSCs) in a manner dependent on the generation of reactive oxygen species (ROS). Rac1 GTPase and NADPH oxidase 1 (Nox1) are activated by IL-17 to produce ROS, which in turn stimulates hMSC proliferation. The activation of the MEK-ERK pathway is also crucial for IL-17-dependent hMSC proliferation. TRAF6 and Act1 are required to activate Nox 1 and to phosphorylate MEK on IL-17 stimulation. Interestingly, IL-17 not only accelerates the proliferation of hMSCs, but also induces their migration, motility, and osteoblastic differentiation. Furthermore, IL-17 induces the expression of M-CSF and receptor activator of NF-κB ligand (RANKL) on hMSCs, thereby supporting osteoclastogenesis both in vivo and in vitro. On the basis of these results, we suggest that IL-17 can function as a signal to induce extensive bone turnover by regulating hMSC recruitment, proliferation, motility, and differentiation.


Cell Death & Differentiation | 2006

Osteoclast differentiation requires TAK1 and MKK6 for NFATc1 induction and NF-κB transactivation by RANKL

Hao Huang; Jiyoon Ryu; Jeongim Ha; Eun-Ju Chang; Hyun-Man Kim; Hong-Hee Kim; Toshio Kitamura; Zang Hee Lee; Hong Hee Kim

Osteoclast (Oc) differentiation is fundamentally controlled by receptor activator of nuclear factor kappaB ligand (RANKL). RANKL signalling targets include mitogen-activated protein kinases (MAPKs), nuclear factor kappaB (NF-κB), and nuclear factor of activated T cells (NFAT)c1. In this study, we found that p38 MAPK upstream components transforming growth factor-beta-activated kinase 1 (TAK1), MKK3, and MKK6 increased by RANKL in an early stage of osteoclastogenesis from primary bone marrow cells, which led to enhanced p38 activation. Retroviral transduction of dominant-negative (DN) forms of TAK1 and MKK6, but not that of MKK3, reduced Oc differentiation. Transduction of TAK1-DN and MKK6-DN and treatment with the p38 inhibitor SB203580 attenuated NFATc1 induction by RANKL. TAK1-DN, MKK6-DN, and SB203580, but not MKK3-DN, also suppressed RANKL stimulation of NF-κB transcription activity in a manner dependent on p65 phosphorylation on Ser-536. These results indicate that TAK1 and MKK6 constitute the p38 signalling pathway to participate to Oc differentiation by RANKL through p65 phosphorylation and NFATc1 induction, and that MKK6 and MKK3 have differential roles in osteoclastogenesis from bone marrow precursors.


Molecular Pharmacology | 2010

Epigallocatechin-3-gallate Inhibits Osteoclastogenesis by Down-Regulating c-Fos Expression and Suppressing the Nuclear Factor-κB Signal

Jong-Ho Lee; Hexiu Jin; Hye-Eun Shim; Ha-Neui Kim; Hyunil Ha; Zang Hee Lee

Epigallocatechin-3-gallate (EGCG), the major anti-inflammatory compound in green tea, has been shown to suppress osteoclast differentiation. However, the precise molecular mechanisms underlying the inhibitory action of EGCG in osteoclastogenesis and the effect of EGCG on inflammation-mediated bone destruction remain unclear. In this study, we found that EGCG inhibited osteoclast formation induced by osteoclastogenic factors in bone marrow cell-osteoblast cocultures but did not affect the ratio of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) to osteoprotegerin induced by osteoclastogenic factors in osteoblasts. We also found that EGCG inhibited osteoclast formation from bone marrow macrophages (BMMs) induced by macrophage colony-stimulating factor plus RANKL in a dose-dependent manner without cytotoxicity. Pretreatment with EGCG significantly inhibited RANKL-induced the gene expression of c-Fos and nuclear factor of activated T-cells (NFATc1), essential transcription factors for osteoclast development. EGCG suppressed RANKL-induced activation of c-Jun N-terminal protein kinase (JNK) pathway, among the three well known mitogen-activated protein kinases and also inhibited RANKL-induced phosphorylation of the NF-κB p65 subunit at Ser276 and NF-κB transcriptional activity without affecting the degradation of IκBα and NF-κB DNA-binding in BMMs. The inhibitory effect of EGCG on osteoclast formation was somewhat reversed by retroviral c-Fos overexpression, suggesting that c-Fos is a downstream target for antiosteoclastogenic action of EGCG. In addition, EGCG treatment reduced interleukin-1-induced osteoclast formation and bone destruction in mouse calvarial bone in vivo. Taken together, our data suggest that EGCG has an antiosteoclastogenic effect by inhibiting RANKL-induced the activation of JNK/c-Jun and NF-κB pathways, thereby suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.


Journal of Cell Science | 2006

Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4

Eun-Ju Chang; Hyon Jong Kim; Jeongim Ha; Hyung Joon Kim; Jiyoon Ryu; Kwang-Hyun Park; Uh-Hyun Kim; Zang Hee Lee; Hyun-Man Kim; David E. Fisher; Hong-Hee Kim

The differentiation of osteoclasts, cells specialized for bone resorption, is governed by two key factors, macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). The extracellular matrix (ECM) is an important factor influencing cell fate. To date, little investigation on the relationship between ECM components and osteoclast differentiation has been documented. In this study, we uncovered a potent anti-osteoclastogenic effect of hyaluronan (HA), an ECM component present in bone marrow and soft connective tissues, in primary mouse and human osteoclast precursor cell cultures. The anti-osteoclastogenic function of HA was dependent on Toll-like receptor 4 (TLR4) but not on CD44. HA inhibited M-CSF-dependent signaling pathways involving Rac, reactive oxygen species and mitogen-activated protein kinases, resulting in suppression of transcription factors AP-1 and MITF that control RANK expression. Furthermore, in an in vivo mouse model of calvarial bone resorption assays HA reduced RANKL-induced bone erosion and osteoclastogenesis. Our results clearly show that HA inhibits osteoclast differentiation through TLR4 by interfering with M-CSF signaling, and point that the interaction between ECM components and innate immune receptors can play an important role in the regulation of bone metabolism.


Nature Medicine | 2008

Brain-type creatine kinase has a crucial role in osteoclast-mediated bone resorption

Eun-Ju Chang; Jeongim Ha; Frank Oerlemans; You Jin Lee; Soo Woong Lee; Jiyoon Ryu; Hyung Joon Kim; Young-Kyun Lee; Hyun-Man Kim; Je-Yong Choi; Jin Young Kim; Chan Soo Shin; Youngmi Kim Pak; Bé Wieringa; Zang Hee Lee; Hong-Hee Kim

Osteoclasts differentiate from precursor cells of the monocyte-macrophage lineage and subsequently become activated to be competent for bone resorption through programs primarily governed by receptor activator of nuclear factor-κB ligand in cooperation with macrophage colony–stimulating factor. Proteins prominently expressed at late phases of osteoclastogenesis and with a supportive role in osteoclast function are potential therapeutic targets for bone-remodeling disorders. In this study, we used a proteomics approach to show that abundance of the brain-type cytoplasmic creatine kinase (Ckb) is greatly increased during osteoclastogenesis. Decreasing Ckb abundance by RNA interference or blocking its enzymatic activity with a pharmacological inhibitor, cyclocreatine, suppressed the bone-resorbing activity of osteoclasts grown in vitro via combined effects on actin ring formation, RhoA GTPase activity and vacuolar ATPase function. Activities of osteoclasts derived from Ckb−/− mice were similarly affected. In vivo studies showed that Ckb−/− mice were better protected against bone loss induced by ovariectomy, lipopolysaccharide challenge or interleukin-1 treatment than wild-type controls. Furthermore, administration of cyclocreatine or adenoviruses harboring Ckb small hairpin RNA attenuated bone loss in rat and mouse models. Our findings establish an important role for Ckb in the bone-resorbing function of osteoclasts and underscore its potential as a new molecular target for antiresorptive drug development.


Arthritis & Rheumatism | 2008

Reciprocal Cross-Talk Between RANKL and Interferon-γ-Inducible Protein 10 Is Responsible for Bone-Erosive Experimental Arthritis

Han Bok Kwak; Hyunil Ha; Ha-Neui Kim; Jong-Ho Lee; Hun Soo Kim; Seungbok Lee; Hyun-Man Kim; Jung Yeon Kim; Hong-Hee Kim; Yeong Wook Song; Zang Hee Lee

OBJECTIVE Interferon-gamma-inducible protein 10 (IP-10; also called CXCL10), a chemokine important in the migration and proliferation of T cells, is induced in a wide variety of cell types. However, the role of IP-10 in rheumatoid arthritis (RA) remains largely unknown. The purpose of this study was to examine the potential role of IP-10 in bone resorption and RA through examination of a mouse model of collagen-induced arthritis (CIA). METHODS The effects of IP-10 on mouse T cells during osteoclast differentiation were examined in migration assays. The bone-erosive activity of IP-10 was determined in vivo in a mouse model of CIA by histologic and immunostaining analyses. Cytokine levels in serum and culture medium were measured with sandwich enzyme-linked immunosorbent assays. RESULTS Serum concentrations of IP-10 were significantly higher in mice with CIA than in control mice. RANKL greatly induced IP-10 expression in osteoclast precursors, but not in mature osteoclasts. IP-10 stimulated the expression of RANKL and tumor necrosis factor alpha (TNFalpha) in CD4+ T cells and induced osteoclastogenesis in cocultures of CD4+ T cells and osteoclast precursors. However, IP-10 did not induce RANKL or TNFalpha in CD8+ T cells. Treatment with neutralizing antibody to IP-10 significantly inhibited the infiltration of CD4+ T cells and F4/80+ macrophages into the synovium and attenuated bone destruction in mice with CIA. Furthermore, levels of RANKL and TNFalpha were inhibited by antibody to IP-10. Bone erosion was observed in mice infected with an IP-10 retrovirus. CONCLUSION Our findings suggest that IP-10 plays a critical role in the infiltration of CD4+ T cells and F4/80+ macrophages into inflamed joints and causes bone destruction. Our results provide the first evidence that IP-10 contributes to the recruitment of inflammatory cells and is involved in bone erosion in inflamed joints.


Journal of Immunology | 2006

α-Lipoic Acid Inhibits Inflammatory Bone Resorption by Suppressing Prostaglandin E2 Synthesis

Hyunil Ha; Jong-Ho Lee; Ha-Neui Kim; Hyun-Man Kim; Han Bok Kwak; Seungbok Lee; Hong-Hee Kim; Zang Hee Lee

α-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several pathological conditions, including diabetic polyneuropathy. In the present study, we examined the effects of LA on osteoclastic bone loss associated with inflammation. LA significantly inhibited IL-1-induced osteoclast formation in cocultures of mouse osteoblasts and bone marrow cells, but LA had only a marginal effect on osteoclastogenesis from bone marrow macrophages induced by receptor activator of NF-κB ligand (RANKL). LA inhibited both the sustained up-regulation of RANKL expression and the production of PGE2 induced by IL-1 in osteoblasts. In addition, treatment with either prostaglandin E2 (PGE2) or RANKL rescued IL-1-induced osteoclast formation inhibited by LA or NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, in cocultures. LA blocked IL-1-induced PGE2 production even in the presence of arachidonic acid, without affecting the expression of COX-2 and membrane-bound PGE2 synthase. Dihydrolipoic acid (the reduced form of LA), but not LA, attenuated recombinant COX-2 activity in vitro. LA also inhibited osteoclast formation and bone loss induced by IL-1 and LPS in mice. Our results suggest that the reduced form of LA inhibits COX-2 activity, PGE2 production, and sustained RANKL expression, thereby inhibiting osteoclast formation and bone loss in inflammatory conditions.


The FASEB Journal | 2003

RANKL regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway

Hong-Hee Kim; Hyoung Seek Shin; Hee Jin Kwak; Kyu Youn Ahn; Ju-Hyun Kim; Hyuek Jong Lee; Mi-Sook Lee; Zang Hee Lee; Gou Young Koh

The maintenance of endothelial integrity is important for prevention of vascular diseases. Several growth factors, such as bFGF and angiopoietin‐1, have been shown to suppress endothelial cell apoptosis and thus help to maintain endothelial integrity. Several studies suggested that receptor activator of NF‐κB (RANK) and its ligand (RANKL) could be involved in endothelial physiology. Using immunofluorescence and reverse transcriptase‐polymerse chain reaction, we found that RANK was expressed by endothelial cells, and RANKL was expressed by arterial smooth muscle cells. Furthermore, RANKL suppressed apoptosis of primary cultured endothelial cells. The RANKL‐induced survival appeared to be dependent on PI 3′‐kinase activity, because wortmannin and LY294002, PI 3′‐kinase‐specific inhibitors, blocked the RANKL‐induced survival effect. RANKL elicited the phosphorylation of the serine‐threonine kinase Akt at Ser473 in a PI 3′‐kinase‐dependent manner. The expression of a dominant‐negative form of Akt or pretreatment of Akt‐specific inhibitor in endothelial cells reversed the RANKL‐induced survival effect. Tumor necrosis factor‐α, which causes endothelial cell apoptosis, induced endothelial cells to express osteoprotegerin, a decoy receptor that inhibits RANK‐RANKL signaling. These findings indicate that RANK, in response to the paracrine stimulus of RANKL, may play an important role in maintaining endothelial cell integrity through the PI 3′‐kinase/Akt signal transduction pathway.


Journal of Bacteriology | 2000

Vibrio vulnificus has the transmembrane transcription activator ToxRS stimulating the expression of the hemolysin gene vvhA.

Shee Eun Lee; Sung Heui Shin; Soo Young Kim; Young Ran Kim; Dong Hyeon Shin; Sun Sik Chung; Zang Hee Lee; Jee Yeon Lee; Kwang Choel Jeong; Sang Ho Choi; Joon Haeng Rhee

In an attempt to dissect the virulence regulatory mechanism in Vibrio vulnificus, we tried to identify the V. cholerae transmembrane virulence regulator toxRS (toxRS(Vc)) homologs in V. vulnificus. By comparing the sequences of toxRS of V. cholerae and V. parahaemolyticus (toxRS(Vp)), we designed a degenerate primer set targeting well-conserved sequences. Using the PCR product as an authentic probe for Southern blot hybridization, a 1.6-kb BglII-HindIII fragment and a 1.2-kb HindIII fragment containing two complete open reading frames and one partial open reading frame attributable to toxR(Vv), toxS(Vv), and htpG(Vv) were cloned. ToxR(Vv) shared 55.0 and 63.0% sequence homology with ToxR(Vc) and ToxR(Vp), respectively. ToxS(Vv) was 71.5 and 65.7% homologous to ToxS(Vc) and ToxS(Vp), respectively. The amino acid sequences of ToxRS(Vv) showed transmembrane and activity domains similar to those observed in ToxRS(Vc) and ToxRS(Vp). Western blot analysis proved the expression of ToxR(Vv) in V. vulnificus. ToxRS(Vv) enhanced, in an Escherichia coli background, the expression of the V. vulnificus hemolysin gene (vvhA) fivefold. ToxRS(Vv) also activated the ToxR(Vc)-regulated ctx promoter incorporated into an E. coli chromosome. A toxR(Vv) null mutation decreased hemolysin production. The defect in hemolysin production could be complemented by a plasmid harboring the wild-type gene. The toxR(Vv) mutation also showed a reversed outer membrane protein expression profile in comparison to the isogenic wild-type strain. These results demonstrate that ToxR(Vv) may regulate the virulence expression of V. vulnificus.

Collaboration


Dive into the Zang Hee Lee's collaboration.

Top Co-Authors

Avatar

Hong-Hee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyunil Ha

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ha-Neui Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jong-Ho Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hyun-Man Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyung Joon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Won Jong Jin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hong Hee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge