Zanna Hyvönen
University of Eastern Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zanna Hyvönen.
European Journal of Pharmaceutical Sciences | 2002
Zanna Hyvönen; Marika Ruponen; Seppo Rönkkö; Pekka Suhonen; Arto Urtti
Double-charged 1,4-dihydropyridine (1,4-DHP) amphiphiles have been shown to condense DNA and efficiently transfect it into cells in vitro [Hyvönen et al., Biochim. Biophys. Acta 1509 (2000) 451]. Alkyl chain length and buffering capacity at endosomal pH range (5.0-7.4) affected complexation and transfection activity. In this study we examined how those chemical modifications of amphiphile-DNA complexes (amphiplexes) affect their interactions with extracellular polyanions (glycosaminoglycans, albumin) and lipid bilayers, their cellular uptake and intracellular distribution. To evaluate cellular uptake, CV1-P cells were incubated with labeled DNA-amphiphile complexes and analyzed by flow cytometry. Confocal laser fluorescence microscopy was used to investigate the intracellular distribution of amphiplexes. The results showed that biophysical properties of compounds can be changed by slight structural modifications. These factors determine the intracellular kinetics and transfection efficacy of the compounds. Some extracellular glycosaminoglycans and serum interfere with 1,4-DHP-amphiphile-mediated transfection by destabilizing the amphiplexes. Neither high cellular uptake, membrane destabilizing activity nor buffering capacity alone is adequate for high transfection efficacy. The activity results from complex interplay of various factors that determine intracellular kinetics and, consequently, transfection.
Journal of Controlled Release | 2012
Polina Ilina; Zanna Hyvönen; Maeva Saura; Kirsten Sandvig; Marjo Yliperttula; Marika Ruponen
Detailed understanding of the uptake mechanisms and intracellular processing of nonviral gene delivery systems will allow design of more effective carriers. This work gets insight into the intracellular kinetics of pDNA delivered by polyethyleneimine (PEI), cationic lipid DOTAP and calcium phosphate (CaP) precipitates. Amount of cell- and nuclear-associated pDNA was quantified by qRT-PCR at multiple time points after transfection. Moreover, the impact of specific endocytic pathways on the cell entry and intracellular kinetics of pDNA was studied by inhibition (blockage) of either clathrin- or dynamin-mediated endocytosis by using both genetically manipulated cell lines and chemical inhibitors of endocytosis. Quantitative analysis of defined kinetic parameters revealed that neither cellular nor nuclear uptake of pDNA correlated with transgene expression, emphasizing the importance of the post-nuclear processes in overall transfection efficacy. Changes in transgene expression observed upon blockage of endocytosis was carrier dependent and correlated relatively well with the changes at the cellular and nuclear uptake levels but not with the amount of cell-associated pDNA. Due to low specificity of chemical inhibitors and activation of alternative endocytosis pathways after genetic blockage of endocytosis neither of these methods is optimal for studying the role of endocytosis. Therefore, one should be careful when interpreting the obtained results from such studies and not to trust the data obtained only from one method.
Journal of Controlled Release | 2008
Julia Lehtinen; Zanna Hyvönen; Astrid Subrizi; Heike Bunjes; Arto Urtti
Cationic polymers are efficient gene delivery vectors in in vitro conditions, but these carriers can fail in vivo due to interactions with extracellular polyanions, i.e. glycosaminoglycans (GAG). The aim of this study was to develop a stable gene delivery vector that is activated at the acidic endosomal pH. Cationic DNA/PEI complexes were coated by 1,2-dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) (3:2 mol/mol) using two coating methods: detergent removal and mixing with liposomes prepared by ethanol injection. Only detergent removal produced lipid-coated DNA complexes that were stable against GAGs, but were membrane active at low pH towards endosome mimicking liposomes. In relation to the low cellular uptake of the coated complexes, their transfection efficacy was relatively high. PEGylation of the coated complexes increased their cellular uptake but reduced the pH-sensitivity. Detergent removal was thus a superior method for the production of stable, but acid activatable, lipid-coated DNA complexes.
Journal of Controlled Release | 2012
Zanna Hyvönen; Vesa Hämäläinen; Marika Ruponen; Bart Lucas; Joanna Rejman; Dries Vercauteren; Jo Demeester; Stefaan C. De Smedt; Kevin Braeckmans
The low transfection efficacy of non-viral gene delivery systems limits the therapeutic application of these vectors. Besides the inefficient release of the complexes or pDNA from endolysosomes into the cytoplasm or poor nuclear uptake, the nuclear and post-nuclear processing might unfavorably affect the transgene expression. Positively charged amphiphilic 1,4-dihydropyridine (1,4-DHP) derivatives were earlier proposed as a promising tool for the delivery of DNA into target cells in vitro and in vivo. However, the structure/activity relationship of these carriers is poorly understood as yet. In this work we studied the intracellular processing of complexes, composed of three structurally related 1,4-DHP derivatives, in a retinal pigment epithelial (ARPE-19) cell line. The pre- and post-nuclear processing of the complexes was quantified on the nuclear, mRNA and transgene expression level. Here we show that the interaction of 1,4-DHP complexes with the cell membrane temporarily increases the permeability of the ARPE-19 cell membrane for small molecular compounds. However, the main mechanism for internalization of 1,4-DHP complexes is endocytosis. We found that all examined derivatives are able to destabilize endosomal membranes by lipid exchange upon acidification. In addition, the buffering capacity of some of the compounds may contribute to the endosomal escape of the complexes as well through the proton sponge effect. Previously we reported that cellular uptake of 1,4-DHP complexes does not correlate with transgene expression. In this study we surprisingly revealed that there is no correlation between the amount of plasmids taken up by the cell and the amount of plasmids found in the cell nucleus. Furthermore, it was found that a high amount of plasmid in the nucleus does not ensure high mRNA expression, likely due to remaining interactions of the carrier with the plasmids. Neither did the expression of mRNA always result in the production of a functional protein, possibly due to the interaction of free carrier with intracellular components which are involved in the post-translational modification of protein and folding process. Overall, our data suggest that succeeding of both the pre- and the post-nuclear intracellular processes is equally essential for successful transgene expression.
New Journal of Chemistry | 2013
Karlis Pajuste; Zanna Hyvönen; Oksana Petrichenko; Dainis Kaldre; Martins Rucins; Brigita Cekavicus; Velta Ose; Baiba Skrivele; Marina Gosteva; Emmanuelle Morin-Picardat; Mara Plotniece; Arkadij Sobolev; Gunars Duburs; Marika Ruponen; Aiva Plotniece
Seventeen 1,4-dihydropyridine (1,4-DHP) amphiphiles including differently substituted pyridinium, pyrazinium, N-methyl piperidinium or N-methyl morpholinium moieties as the cationic head-group of the molecule have been designed and synthesised. 1,4-DHP amphiphiles have been earlier proposed as a promising tool for plasmid DNA (pDNA) delivery in vitro. In this work the ability of the 1,4-DHP amphiphiles to self-assemble, to bind pDNA and to transfer it into the cells as well as the cytotoxicity of 1,4-DHP amphiphiles–pDNA complexes was studied. Furthermore, antiradical activity (ARA) of the 1,4-DHP derivatives was determined. We have revealed that all new 1,4-DHP amphiphiles possessed self-assembling properties and formed nanoparticles in an aqueous environment. The structure of the cationic head-group of 1,4-DHP amphiphiles influenced the size of nanoparticles. Additionally, we demonstrated for the first time that the electronic nature of the substituent of the pyridinium as the cationic head-group of the 1,4-DHP amphiphiles strongly affected the ability of these compounds to bind pDNA and transfer it into the cells. The amphiphiles with electron-donating properties possessing substituents at pyridinium moieties were able to bind pDNA and to deliver it more efficiently than amphiphiles containing electron-withdrawing properties possessing substituents at pyridinium moieties. Moreover, in this study we have established that the presence of the cationic part in the molecule was essential for the expression of ARA among tested 1,4-DHP amphiphiles. Cationic 1,4-DHP derivatives containing pyrazinium or N-methyl morpholinium substituents in the cationic head-group of the molecule displayed the highest ARA.
Journal of Controlled Release | 2014
Alireza Nomani; Zanna Hyvönen; Eveliina Pulkkinen; Marjo Hiekkala; Marika Ruponen
Intracellular limiting steps and molecules involved in internalization and intracellular routing of non-viral gene delivery systems are still poorly understood. In this study, the intracellular kinetics of three different gene delivery systems calcium phosphate precipitates (CaP), polyethyleneimine (PEI) and N-[1-(2,3-dioleyl)propyl]-N,N,N-trimethylammonium chloride (DOTAP)) were quantified at cellular, nuclear, transcriptional and translational levels by using qRT-PCR. Additionally, a role of cell surface glycosaminoglycans (GAGs) was evaluated by performing the aforementioned studies in cells devoid of GAGs (pgsB-618) and cells lacking heparan sulphate (HS). The obtained data showed that the intracellular kinetics was dependent on the type of gene carrier and the weakest intracellular step varied between the carriers; rapid elimination of cell-associated pDNA in CaP, nuclear uptake in DOTAP and transcriptional and translational events in PEI mediated transfections. Overall, neither the amount of cell- nor nuclear associated pDNA correlated with transgene expression but the mRNA expression of the transgene correlated well with the expression at protein level. The nuclear uptake of pDNA in all cases was rapid and efficient thus indicating that the post-nuclear processes including transcription and translation steps have a critical role in defining the efficiency of non-viral gene delivery systems. Our study demonstrated that cell-surface GAGs are not essential for cell surface binding and internalization of gene delivery complexes, but they are able to define the intracellular routing of the complexes by leading them to pathways with high pDNA elimination.
Methods in molecular medicine | 2005
Marika Ruponen; Zanna Hyvönen; Arto Urtti; Seppo Ylä-Herttuala
Nonviral gene delivery methods with naked plasmids and various plasmid carrier complexes have been used for intravascular, intramuscular and periadventitial gene delivery to cardiovascular system. Efficacy, homogenity and quality of the nonviral gene delivery complexes can be significantly affected by the way they are produced. This chapter presents basic methods to produce nonviral gene delivery complexes and describes common models to test their properties in cardiovascular applications in vivo.
Journal of Controlled Release | 2004
Zanna Hyvönen; Seppo Rönkkö; Marjo-Riitta Toppinen; Ilpo Jääskeläinen; Aiva Plotniece; Arto Urtti
European Journal of Pharmaceutical Sciences | 2008
J. Ropponen; Zanna Hyvönen; Marika Ruponen; Kristiina Järvinen; Michael Malkoch; Eva Malmström
Archive | 2001
Arto Urtti; Zanna Hyvönen; Aiva Plotniece; Natalia Makarova; Inese Reine; G. Tirzitis; Brigita Vigante; Brigita Cekavicus; Andulis Shmidlers; A. A. Krauze; R. A. Zhalubovskis; Gunars Duburs; Mikko P. Turunen; Seppo Yla-Herttuala; Ilpo Jääskeläinen; Marjo-Riitta Toppinen