Zaohe Wu
Zhongkai University of Agriculture and Engineering
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zaohe Wu.
Fish & Shellfish Immunology | 2014
Jufen Tang; Jia Cai; Ran Liu; Jiamin Wang; Yishan Lu; Zaohe Wu; Jichang Jian
The effects of a Chinese herbal mixture (CHM) composed of astragalus, angelica, hawthorn, Licorice root and honeysuckle on immune responses and disease resistant of Nile tilapia (Oreochromis niloticus GIFT strain) were investigated in present study. Fish were fed diets containing 0 (control), 0.5%, 1.0%, 1.5% or 2.0% CHM (w/w) for 4 weeks. And series of immune parameters including lysozyme, cytokine genes TNF-α and IL-1β, superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA) were measured during test period. After four weeks of feeding, fish were infected with Aeromonas hydrophila and mortalities were recorded. Results of this study showed that feeding Nile tilapia with CHM-supplementation diet stimulated lysozyme activity, SOD activity and POD activity in serum, induced TNF-α and IL-1β mRNA expression in head kidney and spleen, but decreased serum MDA content. All CHM-supplemental groups showed reduced mortalities following A. hydrophila infection compared with the group fed the control diet. These results suggested that this CHM can be applied as a tilapia feed supplement to elevate fish immunity and disease resistance against A. hydrophila.
Fish & Shellfish Immunology | 2015
Jia Cai; Hongli Xia; Yucong Huang; Jufen Tang; Jichang Jian; Zaohe Wu; Yishan Lu
Tumor necrosis factor receptor (TNFR)-associated factor 3(TRAF3) is a key regulator in TNFR and Toll-like receptor (TLRs)/RIG-I-like receptors (RLRs) signal pathway. Here, a TRAF3 gene (Ls-TRAF3, GenBank Accession No: KJ789921) is cloned from humphead snapper (Lutjanus sanguineus). The Ls-TRAF3 cDNA contains an open reading frame of 1788 bp, which encodes a polypeptide of 595 amino acids. The deduced amino acid of Ls-TRAF3 possesses a RING finger, two TRAF-type zinc fingers, a coiled-coil and a MATH domain. Ls-TRAF3 protein shares high identities with other known TRAF3 proteins. In healthy fish, Ls-TRAF3 transcripts were broadly expressed in all examined tissues with highest expression levels in spleen, liver and head kidney. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ls-TRAF3 could be induced by bacteria or viral PAMP poly I:C stimulation in vivo. Here, we also showed Ls-TRAF3 that, positively regulated IRF3 and Mx upon poly I:C stimuli, whereas prevented production of proinflammatory cytokine IL-6 after LPS injection. Moreover, over-expression of wide type (WT) Ls-TRAF3 and truncated forms, including ΔZinc finger 1, ΔZinc finger 2 and Δcoiled-coil suppressed NF-κB activity significantly, whereas the inhibitory effect of NF-κB was partially impaired when the RING finger or MATH domain deletion, suggesting the latter was more important for downstream signal transduction. Taken together, these results implicated that Ls-TRAF3 might play regulatory roles in immune response to pathogen invasion.
SpringerPlus | 2014
Xiuying Yan; Ya Wang; Lingfang Xiong; Jichang Jian; Zaohe Wu
Grass carp reovirus (GCRV) is a causative agent of haemorrhagic disease in grass carp that drastically affects grass carp aquaculture. Here we report a novel GCRV isolate isolated from sick grass carp that induces obvious cytopathic effect in CIK cells and name it as GCRV096. A large number of GCRV 096 viral particles were found in the infected CIK cells by electron microscope. The shape, size and the arrangement of this virus were similar to those of grass carp reovirus. With the primers designed according to GCRV 873 genome sequences, specific bands were amplified from sick grass carp and the infected CIK cells. The homology rates among vp4, vp6 and vp7 gene in GCRV 096 and those of some GCRV isolates were over 89%. In this study, the sequences of vp4, vp6 and vp7 were used to analyse sequence variation, phylogenetic relationships and genotypes in twenty five GCRV isolates. The results indicated these twenty five GCRV isolates should be attributed to four genotypes. And there were no obvious characteristics in the geographical distribution of GCRV genotype. The study should provide the exact foundation for developing more effective prevention strategies of grass carp haemorrhagic disease.
Fish & Shellfish Immunology | 2013
Shuanghu Cai; Yucong Huang; Yishan Lu; Zaohe Wu; Bei Wang; Jufen Tang; Jichang Jian
The accessory colonization factor A (ACFA) of Vibrio alginolyticus plays an important role in the efficient colonization of the bacterium and is potential candidates for vaccine development. In present study, the acfA gene was cloned, expressed and purified. Western blot analysis revealed protein recognition with the native ACFA in different V. alginolyticus strains. To analyze the immunogenicity of the recombinant ACFA, Lutjanus erythropterus Bloch were immunized by intraperitoneal injection, and the results demonstrated that the recombinant ACFA produced an observable antibody response in all sera of the vaccinated fish. The differential expressions of RAG1 gene in various tissues of L. erythropterus were analyzed by fluorescent quantitative real-time PCR, and the results showed the RAG1 mRNA expression was significantly up-regulated in thymus, head kidney and spleen tissue. Furthermore, the protective property of recombinant ACFA was evaluated through challenge with six heterogeneous virulent V. alginolyticus strains, and the immunohistochemical analysis in different tissues after challenge with V. alginolyticus. The results showed L. erythropterus vaccinated with recombinant ACFA were more tolerant of the infection by virulent V. alginolyticus strains. The data indicate that the recombinant ACFA could provide heterologous protection for the different virulent V. alginolyticus strains.
Fish & Shellfish Immunology | 2013
Zejun Zhou; Huanying Pang; Yu Ding; Jia Cai; Yucong Huang; Jichang Jian; Zaohe Wu
Type III secretion system (T3SS) in Vibrio alginolyticus is essential for its pathogenesis. VscOs homologous proteins FliJ, InvI and YscO have been suggested to be putative chaperone escorts although its function in V. alginolyticus is unclear. To investigate the physiological role of VscO, a mutant strain of V. alginolyticus with an in-frame deletion of the vscO gene was constructed in the present study. One finding was that the mRNA expression levels of SycD, VopB and VopD proteins decreased in the ΔvscO mutant. In addition, the ΔvscO mutant showed an attenuated swarming ability and a ten-fold decrease in the virulence to fish. However, the ΔvscO mutant showed no difference in the biofilm formation and ECPase activity. Complementation of the mutant strain with the vscO gene could restore the phenotypes of the wild-type strain. Finally, the recombinant VscO protein caused a high antibody titer and an effective protection against lethal challenge with the wild-type strain V. alginolyticus. These results indicated that VscO protein has a specific role in the pathogenesis of V. alginolyticus and it may be a candidate antigen for development of a subunit vaccine against vibriosis.
Fish & Shellfish Immunology | 2017
Wenjie Chen; Lizhu Yi; Shuangshuang Feng; Lijuan Zhao; Jun Li; Meng Zhou; Rishen Liang; Na Gu; Zaohe Wu; Jiagang Tu; Li Lin
Abstract Nervous necrosis virus (NNV), one of the most prevalent fish pathogens, has caused fatal disease of viral nervous necrosis (VNN) in many marine and freshwater fishes, and resulted in heavy economic losses in aquaculture industry worldwide. However, the molecular mechanisms underlying the pathogenicity of NNV remain elusive. In this study, the expression profiles of microRNA (miRNA) were investigated in grouper fin (GF‐1) cells infected with red‐spotted grouper nervous necrosis virus (RGNNV) via deep sequencing technique. The results showed that a total of 220 miRNAs were identified by aligning the small RNA sequences with the miRNA database of zebrafish, and 18 novel miRNAs were predicted using miRDeep2 software. Compared with the non‐infected groups, 51 and 16 differentially expressed miRNAs (DE‐miRNAs) were identified in the samples infected with RGNNV at 3 and 24 h, respectively. Six DE‐miRNAs were randomly selected to validate their expressions using quantitative reverse transcription polymerase chain reaction (qRT‐PCR), the results showed that their expression profiles were consistent with those obtained by deep sequencing. The target genes of the DE‐miRNAs covered a wide range of functions, such as regulation of transcription, oxidation‐reduction process, proteolysis, regulation of apoptotic process, and immune response. In addition, the effects of four DE‐miRNAs including miR‐1, miR‐30b, miR‐150, and miR‐184 on RGNNV replication were evaluated, and the results showed that over‐expression of each of the four miRNAs promoted the replication of RGNNV. These data provide insight into the molecular mechanism of RGNNV infection, and will benefit for the development of effective strategies to control RGNNV infection. HighlightsThe molecular mechanism on the pathogenicity of nervous necrosis virus (NNV) is poorly understood.This is the first study on the expression profiles of microRNA (miRNA) on NNV infection.We identified 116 new microRNAs in orange spotted grouper.
Fish & Shellfish Immunology | 2017
Haiyang Wang; Fan Zhu; Yucong Huang; Yu Ding; Jichang Jian; Zaohe Wu
ABSTRACT The main aims of this study were to construct glutathione peroxidase (GPx) DNA vaccine of Vibrio harveyi ZJ0603 and to investigate its immune protective efficiency as a vaccine candidate on the orange‐spotted grouper (Epinephelus coioides) treated with V. harveyi. Base on the cloning of ZJ0603 GPx gene, a DNA vaccine, named as pcDNA‐GPx, was constructed by inserting GPx gene into pcDNA3.1 (+) plasmid. Orange‐spotted groupers were immunized with the pcDNA‐GPx plasmid by injection intramuscularly. The relative percent of survival (RPS) of fish vaccinated with the DNA vaccine against pathogenic V. harveyi infection was 77.5%. The expression of DNA vaccine was analyzed in the tissues of orange‐spotted grouper by PCR and RT‐PCR. The results indicated that pcDNA‐GPx distributed and expressed in the head kidney, liver, spleen, gill and injected muscle at 7 and 28 days after vaccination. Significant specific antibody responses were also detected in the vaccinated orange‐spotted groupers by indirect ELISA method. In a conclusion, DNA vaccine pcDNA‐GPx showed an effective immune protection to the orange‐spotted grouper treated with V. harveyi. The GPx can be used as a candidate DNA vaccine for the control of vibriosis. HIGHLIGHTSpcDNA‐GPx was constructed by inserting GPx gene into pcDNA3.1 (+) plasmid.RPS of fish vaccinated with the DNA vaccine against V. harveyi was 77.5%.pcDNA‐GPx distributed in the head kidney, liver, spleen, gill and injected muscle.Antibody titers in the serum of the immunized fish were 25.0 to 212.3.GPx can be used as a candidate DNA vaccine for the control of vibriosis.
Fish & Shellfish Immunology | 2016
Lijuan Zhao; Jiagang Tu; Yulei Zhang; Jinfu Wang; Ling Yang; Weimin Wang; Zaohe Wu; Qinglei Meng; Li Lin
Flavobacterium columnare (FC) has caused worldwide fish columnaris disease with high mortality and great economic losses in cultured fish, including Topmouth culter (Culter alburnus). However, the knowledge about the host factors involved in FC infection is little known. In this study, the transcriptomic profiles of the head kidney from Topmouth culter with or without FC infection were obtained using HiSeq™ 2500 (Illumina). Totally 79,641 unigenes with high quality were obtained. Among them, 4037 differently expressed genes, including 1217 up-regulated and 2820 down-regulated genes, were identified and enriched using databases of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The differently expressed genes were mainly associated with pathways such as immune response, carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Since phagocytosis is a central mechanism of innate immune response by host cells to defense against infectious agents, genes related to the phagosome pathway were scrutinized and 9 differently expressed phagosome-related genes were identified including 3 up-regulated and 6 down-regulated genes. Five of them were further validated by quantitative real-time polymerase chain reaction (qRT-PCR). This transcriptomic analysis of host genes in response to FC infection provides data towards understanding the infection mechanisms and will shed a new light on the prevention of columnaris.
Virus Genes | 2015
Xiuying Yan; Jiguo Xie; Jie Li; Cai Shuanghu; Zaohe Wu; Jichang Jian
Grass carp reovirus (GCRV) has caused serious economic losses for several decades in China. The protein VP7 is one of the important structural proteins in GCRV. Recent studies indicated that the protein VP7 had the commendable antigenicity and immunogenicity. The protein VP7 cooperated with VP5 could change the conformation of the cell membrane and facilitate entry of GCRV into host cells. We speculated that the protein VP7 should play an important role in the pathogenesis of GCRV. In order to explore the function of the protein VP7, the bait protein expression plasmid pGBKT7-vp7 and the cDNA library of CIK cells were constructed. By yeast two-hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the protein VP7 with ribosomal protein S20 (RPS20) and eukaryotic translation initiation factor 3 subunit b (eIF3b) in CIK cells were identified. RPS20 played the important roles in the generation of influenza B virus and a variety of diseases. eIF3b was relative to the infection of some viruses. This study suggested that the protein VP7 played the role in viral replication and most likely interacted with host proteins by RPS20 and eIF3b. The interaction mechanisms of the protein VP7 with RPS20 and eIF3b, and the subsequent effector mechanisms needed to be further studied. The corresponding protein interaction of the protein VP7 was not acquired in bioinformatics. The protein VP7 and its untranslated region may have the unknown special function. This study laid the foundation for deeply exploring the function of the protein VP7 in GCRV and had the important scientific significance for exploring the pathogenic mechanism of GCRV.
Journal of Ocean University of China | 2016
Yucong Huang; Xiuying Yan; Shuanghu Cai; Jia Cai; Jichang Jian; Yishan Lu; Jufen Tang; Zaohe Wu
CD79, a key component of the B cell antigen receptor complex, is composed of CD79α(Igα) and CD79β(Igβ) encoded by mb-1 and B29 respectively, and plays an important role in B cell signaling. In this study, we isolated and characterized mb-1 and B29 from humphead snapper (Lutjanus sanguineus). Their tissue distribution and expression profiles after stimulations in vitro and in vivo were also investigated. The humphead snapper mb-1 and B29 contain open reading frames of 684 bp and 606 bp, encoding 227 amino acids and 201 amino acids, respectively. Both CD79α and CD79β possess signal peptide, extracellular Ig domain, transmembrane region and immunoreceptor tyrosine kinase activation motif (ITAM). Mb-1 is highly expressed in lymphoid organs (thymus, posterior kidney and spleen) and mucosal-associated lymphoid tissues (gill and intestine), while B29 is mainly detected in posterior kidney, spleen, gill and skin. Furthermore, transcription of mb-1 and B29 in head kidney leucocytes was up-regulated following lipopolysaccharide (LPS), pokeweed mitogen (PWM), and polyinosinic-polycytidylic acid (PolyI:C) stimulation, respectively, and their expression level in anterior kidney and spleen was also increased after challenged with formalin-inactived Vibrio harveyi. These results indicated that humphead snapper CD79 molecule might play an important role in immune response to pathogen infection.