Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zarizal Suhaili is active.

Publication


Featured researches published by Zarizal Suhaili.


Evidence-based Complementary and Alternative Medicine | 2013

Hepatoprotective Activity of Methanolic Extract of Bauhinia purpurea Leaves against Paracetamol-Induced Hepatic Damage in Rats

Farhana Yahya; Siti Syariah Mamat; Mohamad Fauzi Fahmi Kamarolzaman; A. A. Seyedan; K. F. Jakius; Nur Diyana Mahmood; M. S. Shahril; Zarizal Suhaili; Norhafizah Mohtarrudin; Deny Susanti; M. N. Somchit; Lay Kek Teh; Mohd Zaki Salleh; Zuki Abu Bakar Zakaria

In an attempt to further establish the pharmacological properties of Bauhinia purpurea (Fabaceae), hepatoprotective potential of methanol extract of B. purpurea leaves (MEBP) was investigated using the paracetamol- (PCM-) induced liver toxicity in rats. Five groups of rats (n = 6) were used and administered orally once daily with 10% DMSO (negative control), 200 mg/kg silymarin (positive control), or MEBP (50, 250, and 500 mg/kg) for 7 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay with the total phenolic content (TPC) also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of the normal hepatic structural was observed in group pretreated with silymarin and MEBP. Hepatotoxic rats pretreated with silymarin or MEBP exhibited significant decrease (P < 0.05) in ALT and AST enzyme level. Moreover, the extract also exhibited antioxidant activity and contained high TPC. In conclusion, MEBP exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and high phenolic content and thus warrants further investigation.


International Journal of Antimicrobial Agents | 2015

Whole-genome analysis of an extensively drug-resistant clinical isolate of Acinetobacter baumannii AC12: Insights into the mechanisms of resistance of an ST195 clone from Malaysia

Soo-Sum Lean; Chew Chieng Yeo; Zarizal Suhaili; Kwai Lin Thong

Acinetobacter baumannii has emerged as an important nosocomial pathogen owing to its increasing resistance to most, if not all, antibiotics in clinical use. We recently reported the occurrence of extensively drug-resistant (XDR) A. baumannii isolates in a Malaysian tertiary hospital. The genome of one of these XDR isolates (A. baumannii AC12) was completely sequenced and comparative genome analyses were performed to elucidate the genetic basis of its antimicrobial resistance. The A. baumannii AC12 genome consists of a 3.8 Mbp circular chromosome and an 8731 bp cryptic plasmid, pAC12. It belongs to the ST195 lineage and is most closely related to A. baumannii BJAB0715 as well as other strains of the international clone III (IC-III) group. Two antibiotic resistance islands (RIs), designated AC12-RI1 and AC12-RI2, were found in the AC12 chromosome along with a 7 kb Tn1548::armA island conferring resistance to aminoglycosides and macrolides. The 22.8 kb AC12-RI1 interrupts the comM gene and harbours the carbapenem resistance gene blaOXA-23 flanked by ISAba1 within a Tn2006-like structure. AC12-RI1 also harbours resistance determinants for aminoglycosides, tetracyclines and sulphonamides. The 10.3 kb IS26-flanked AC12-RI2 is a derivative of AbGRI2-1, containing aphA1b and blaTEM genes (conferring aminoglycoside and β-lactam resistance, respectively). The presence of numerous genes mediating resistance to various antibiotics in novel RI structures as well as other genes encoding drug transporters and efflux pumps in A. baumannii AC12 most likely contributed to its XDR characteristics.


Frontiers in Microbiology | 2015

Comparative Genomics of Two ST 195 Carbapenem-Resistant Acinetobacter baumannii with Different Susceptibility to Polymyxin Revealed Underlying Resistance Mechanism

Soo-Sum Lean; Chew Chieng Yeo; Zarizal Suhaili; Kwai Lin Thong

Acinetobacter baumannii is a Gram-negative nosocomial pathogen of importance due to its uncanny ability to acquire resistance to most antimicrobials. These include carbapenems, which are the drugs of choice for treating A. baumannii infections, and polymyxins, the drugs of last resort. Whole genome sequencing was performed on two clinical carbapenem-resistant A. baumannii AC29 and AC30 strains which had an indistinguishable ApaI pulsotype but different susceptibilities to polymyxin. Both genomes consisted of an approximately 3.8 Mbp circular chromosome each and several plasmids. AC29 (susceptible to polymyxin) and AC30 (resistant to polymyxin) belonged to the ST195 lineage and are phylogenetically clustered under the International Clone II (IC-II) group. An AbaR4-type resistance island (RI) interrupted the comM gene in the chromosomes of both strains and contained the blaOXA−23 carbapenemase gene and determinants for tetracycline and streptomycin resistance. AC29 harbored another copy of blaOXA−23 in a large (~74 kb) conjugative plasmid, pAC29b, but this gene was absent in a similar plasmid (pAC30c) found in AC30. A 7 kb Tn1548::armA RI which encodes determinants for aminoglycoside and macrolide resistance, is chromosomally-located in AC29 but found in a 16 kb plasmid in AC30, pAC30b. Analysis of known determinants for polymyxin resistance in AC30 showed mutations in the pmrA gene encoding the response regulator of the two-component pmrAB signal transduction system as well as in the lpxD, lpxC, and lpsB genes that encode enzymes involved in the biosynthesis of lipopolysaccharide (LPS). Experimental evidence indicated that impairment of LPS along with overexpression of pmrAB may have contributed to the development of polymyxin resistance in AC30. Cloning of a novel variant of the blaAmpC gene from AC29 and AC30, and its subsequent expression in E. coli also indicated its likely function as an extended-spectrum cephalosporinase.


Pharmaceutical Biology | 2014

Antiulcer activity of Muntingia calabura leaves involves the modulation of endogenous nitric oxide and nonprotein sulfhydryl compounds

Tavamani Balan; Mohd Hijaz Mohd Sani; Velan Suppaiah; Norhafizah Mohtarrudin; Zarizal Suhaili; Zuraini Ahmad; Zainul Amiruddin Zakaria

Abstract Context: Muntingia calabura L. (Muntingiaceae) is a native plant species of the American continent and is widely cultivated in warm areas in Asia, including Malaysia. The plant is traditionally used to relieve pain from gastric ulcers. Objective: This study was designed to determine the antiulcer activity of a methanol extract of M. calabura leaves (MEMC) and the possible mechanisms of action involved. Materials and methods: An acute toxicity study was conducted using a single oral dose of 2000 mg/kg MEMC. The antiulcer activity of MEMC was evaluated in absolute ethanol- and indomethacin-induced gastric ulcer rat models. MEMC was administered orally (dose range 25–500 mg/kg) to rats fasted for 24 h. The animals were pretreated with NG-nitro-l-arginine methyl esters (l-NAME) or N-ethylmaleimide (NEM) prior to MEMC treatment to assess the possible involvement of endogenous nitric oxide (NO) and nonprotein sulfhydryl (NP-SH) compounds in the gastroprotective effect of MEMC. Results: As the administered dose did not cause toxicity in the rats, the oral median lethal dose (LD50) of MEMC was >2000 mg/kg in rats. MEMC exerted significant (p < 0.001) gastroprotective activity in the ethanol- and indomethacin-induced ulcer models dose-dependently. Histological evaluation supported the observed antiulcer activity of MEMC. l-NAME and NEM pretreatment significantly (p < 0.05) reversed and abolished the gastroprotective effect of MEMC, respectively. Discussion and conclusion: The results obtained indicate that MEMC has significant antiulcer activity that might involve the participation of endogenous NO and NP-SH compounds. These findings provide new pharmacological information regarding the potential use of M. calabura.


Emerging Infectious Diseases | 2012

Outbreak-associated Vibrio cholerae Genotypes with Identical Pulsotypes, Malaysia, 2009

Cindy Shuan Ju Teh; Zarizal Suhaili; King Ting Lim; Muhamad Afif Khamaruddin; Fariha Yahya; Mohd Hailmi Sajili; Chew Chieng Yeo; Kwai Lin Thong

A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures.


Journal of Infection and Public Health | 2017

A persistent antimicrobial resistance pattern and limited methicillin-resistance-associated genotype in a short-term Staphylococcus aureus carriage isolated from a student population

Norhidayah Mat Azis; Hui Ping Pung; Abdul Rahim Abdul Rachman; Syafinaz Amin Nordin; Seri Narti Edayu Sarchio; Zarizal Suhaili; Mohd Nasir Mohd Desa

The aim of the present study was to assess and compare the antimicrobial susceptibility pattern against a panel of antibiotics and molecular and methicillin resistance-associated genotypes of 120 carriage S. aureus isolates previously isolated from a student population at two isolation events within a one-month interval. The antibiotic susceptibility of isolates was determined using the Kirby-Bauer disc-diffusion method (cefoxitin by Etest). The MRSA was screened using polymerase chain reaction for the presence of the mecA gene. The mecA-positive isolates were subjected to staphylococcal cassette chromosome (SCC) mec typing, multilocus sequence typing (MLST) and eBURST analysis. All isolates were characterized for the presence of the Panton-Valentine leukocidin (PVL) gene, an enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) pattern and the spa type. For the two occasions where S. aureus was isolated, the highest frequency of resistance was observed for penicillin (70% and 65%, respectively), with a lower rate against erythromycin and tetracycline (<12%). All isolates were susceptible to ciprofloxacin and gentamycin. As for methicillin resistance, eight isolates had minimum inhibitory concentrations (MIC) of resistant categories, but 10 isolates (8.33%) were positive for the mecA gene. The mecA-positive isolates belonged to SCCmec types I (n=9) and V (n=1). MLST was resolved for only three MRSAs, ST508 (n=1), ST88 (n=1) and ST96 (n=1). The results of the eBURST analysis showed that the MRSA isolates analyzed in the present study were potentially related to MRSA identified in other countries. Approximately half of the persistent S. aureus carriers harbored S. aureus of a similar spa type in the respective individuals during both isolation events. A persistent antimicrobial pattern and limited distinct MRSAs were observed over the short study period. The latter frequently exhibited SCCmec type I, commonly associated with hospital-acquired (HA) characteristics, but further delineation is needed to justify the origins of these bacteria.


Journal of Bacteriology | 2012

Genome Sequence of Acinetobacter baumannii AC12, a Polymyxin-Resistant Strain Isolated from Terengganu, Malaysia

Han Ming Gan; Soo-Sum Lean; Zarizal Suhaili; Kwai Lin Thong; Chew Chieng Yeo

Acinetobacter baumannii is a major cause of nosocomial infection worldwide. We report the draft genome sequence of A. baumannii AC12, a multidrug-resistant nosocomial strain with additional resistance to carbapenems and polymyxin. The genome data will provide insights into the genetic basis of antimicrobial resistance and its adaptive mechanism.


Genome Announcements | 2014

Draft Genome Sequence of Methicillin-Resistant Staphylococcus aureus KT/Y21, a Sequence Type 772 (ST772) Strain Isolated from a Pediatric Blood Sample in Terengganu, Malaysia

Zarizal Suhaili; Soo-Sum Lean; Azifah Yahya; Mohd Nasir Mohd Desa; Abdul Manaf Ali; Chew Chieng Yeo

ABSTRACT Here, we report the draft genome sequence of a methicillin-resistant Staphylococcus aureus (MRSA) strain, KT/Y21, isolated from a blood sample of a pediatric patient. This strain belongs to sequence type 772 (ST772), harbors the staphylococcal cassette chromosome mec element (SCCmec) type V, and is positive for the Panton-Valentine leukocidin (PVL) pathogenic determinant.


Germs | 2018

Characterization of resistance to selected antibiotics and Panton-Valentine leukocidin-positive Staphylococcus aureus in a healthy student population at a Malaysian University

Zarizal Suhaili; Putri ’Amira Rafee; Norhidayah Mat Azis; Chew Chieng Yeo; Syafinaz Amin Nordin; Abdul Rachman Abdul Rahim; Mazen M. Jamil Al-Obaidi; Mohd Nasir Mohd Desa

Introduction This study aims to assess the antimicrobial susceptibility profiles of Staphylococcus aureus strains isolated from university students and to determine the prevalence of constitutive and inducible clindamycin resistance, the latter being able to cause therapeutic failure due to false in vitro clindamycin susceptibility. Methods S. aureus strains were isolated from the nasal swabs of 200 health sciences students of a Malaysian university. Twelve classes of antibiotics were used to evaluate the antimicrobial susceptibility profiles with the macrolide-lincosamide-streptogramin B (MLSB) phenotype for inducible clindamycin resistance determined by the double-diffusion test (D-test). Carriage of resistance and virulence genes was performed by PCR on S. aureus isolates that were methicillin resistant, erythromycin resistant and/or positive for the leukocidin gene, pvl (n=15). Results Forty-nine isolates were viable and identified as S. aureus with four of the isolates characterized as methicillin-resistant S. aureus (MRSA; 2.0%). All isolates were susceptible to the antibiotics tested except for penicillin (resistance rate of 49%), erythromycin (16%), oxacillin (8%), cefoxitin (8%) and clindamycin (4%). Of the eight erythromycin-resistant isolates, iMLSB was identified in five isolates (three of which were also MRSA). The majority of the erythromycin-resistant isolates harbored the msrA gene (four iMLSB) with the remaining iMLSB isolate harboring the ermC gene. Conclusion The presence of MRSA isolates which are also iMLSB in healthy individuals suggests that nasal carriage may play a role as a potential reservoir for the transmission of these pathogens.


Archive | 2017

The Evolution and Dissemination of Methicillin Resistance Determinant in Staphylococcus aureus

Abdul Rahim Abdul Rachman; Zarizal Suhaili; Mohd Nasir MohdDesa

Staphylococcus aureus is an opportunistic pathogen and is frequently associated with the antimicrobial resistance. There has been horizontal gene transfer of Staphylococcus chromosome cassette mec (SCCmec) among the staphylococcal species that colonize a similar colonization niche, which eventually results in emergence of new variant with enhanced survival ability in terms of antimicrobial resistance and virulence level in S. aureus. Evolution and dissemination of SCCmec structure resulted in the emergence of methicillin-resistant S. aureus (MRSA) clones around the world covering hospital, community, and livestock settings. MRSA also has the ability to resist different antibiotic profiles known as multidrug-resistant S. aureus (MDR S. aureus).

Collaboration


Dive into the Zarizal Suhaili's collaboration.

Top Co-Authors

Avatar

Chew Chieng Yeo

Universiti Sultan Zainal Abidin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farhana Yahya

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azman Azid

Universiti Sultan Zainal Abidin

View shared research outputs
Top Co-Authors

Avatar

Lay Kek Teh

Universiti Teknologi MARA

View shared research outputs
Researchain Logo
Decentralizing Knowledge