Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zbigniew Polanski is active.

Publication


Featured researches published by Zbigniew Polanski.


Journal of Cell Biology | 2004

The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes

Chizuko Tsurumi; Steffen Hoffmann; Stephan Geley; Ralph Graeser; Zbigniew Polanski

In Xenopus oocytes, the spindle assembly checkpoint (SAC) kinase Bub1 is required for cytostatic factor (CSF)-induced metaphase arrest in meiosis II. To investigate whether matured mouse oocytes are kept in metaphase by a SAC-mediated inhibition of the anaphase-promoting complex/cyclosome (APC/C) complex, we injected a dominant-negative Bub1 mutant (Bub1dn) into mouse oocytes undergoing meiosis in vitro. Passage through meiosis I was accelerated, but even though the SAC was disrupted, injected oocytes still arrested at metaphase II. Bub1dn-injected oocytes released from CSF and treated with nocodazole to disrupt the second meiotic spindle proceeded into interphase, whereas noninjected control oocytes remained arrested at metaphase. Similar results were obtained using dominant-negative forms of Mad2 and BubR1, as well as checkpoint resistant dominant APC/C activating forms of Cdc20. Thus, SAC proteins are required for checkpoint functions in meiosis I and II, but, in contrast to frog eggs, the SAC is not required for establishing or maintaining the CSF arrest in mouse oocytes.


Current Biology | 1998

Bipolar meiotic spindle formation without chromatin

Stéphane Brunet; Zbigniew Polanski; Marie-Hélène Verlhac; Jacek Z. Kubiak; Bernard Maro

Establishing a bipolar spindle is an early event of mitosis or meiosis. In somatic cells, the bipolarity of the spindle is predetermined by the presence of two centrosomes in prophase. Interactions between the microtubules nucleated by centrosomes and the chromosomal kinetochores enable the formation of the spindle. Non-specific chromatin is sufficient, however, to promote spindle assembly in Xenopus cell-free extracts that contain centrosomes [1,2]. The mouse oocyte represents an excellent model system in which to study the mechanism of meiotic spindle formation because of its size, transparency and slow development. These cells have no centrioles, and their multiple microtubule-organizing centers (MTOCs) are composed of foci of pericentriolar material [3,4]. The bipolarity of the meiotic spindle emerges from the reorganization of these randomly distributed MTOCs [4]. Regardless of the mechanisms involved in this reorganization, the chromosomes seem to have a major role during spindle formation in promoting microtubule polymerization and directing the appropriate rearrangement of MTOCs to form the two poles [5]. Here, we examined spindle formation in chromosome-free mouse oocyte fragments. We found that a bipolar spindle can form in vivo in the absence of any chromatin due to the establishment of interactions between microtubule asters that are progressively stabilized by an increase in the number of microtubules involved, demonstrating that spindle formation is an intrinsic property of the microtubule network.


The International Journal of Developmental Biology | 2008

On the transition from the meiotic to mitotic cell cycle during early mouse development

Jacek Z. Kubiak; Maria A. Ciemerych; Anna Hupalowska; Marta Sikora-Polaczek; Zbigniew Polanski

Here, we outline the mechanisms involved in the regulation of cell divisions during oocyte maturation and early cleavages of the mouse embryo. Our interest is focused on the regulation of meiotic M-phases and the first embryonic mitoses that are differently tuned and are characterized by specifically modified mechanisms, some of which have been recently identified. The transitions between the M-phases during this period of development, as well as associated changes in their regulation, are of key importance for both the meiotic maturation of oocytes and the further development of the mammalian embryo. The mouse is an excellent model for studies of the cell cycle during oogenesis and early development. Nevertheless, a number of molecular mechanisms described here were discovered or confirmed during the study of other species and apply also to other mammals including humans.


PLOS Biology | 2006

Space asymmetry directs preferential sperm entry in the absence of polarity in the mouse oocyte.

Nami Motosugi; Jens-Erik Dietrich; Zbigniew Polanski; Davor Solter; Takashi Hiiragi

Knowledge about the mechanism that establishes embryonic polarity is fundamental in understanding mammalian development. In re-addressing several controversial claims, we recently proposed a model in which mouse embryonic polarity is not specified until the blastocyst stage. Before fertilization, the fully differentiated oocyte has been characterized as “polarized,” and we indeed observed that the sperm preferentially enters the polar body half. Here we show that preferential sperm entry is not due to an intrinsic polarity of the oocyte, since fertilization takes place uniformly when the zona pellucida is removed. We suggest that the term “asymmetry” denotes morphological differences, whereas “polarity” in addition implies developmental consequences. Thus, the mouse oocyte can be considered “asymmetric” but “non-polarized.” The penetration through the zona pellucida is also random, and a significant proportion of sperm binds to the oocyte membrane at a point distant from the zona penetration site. Time-lapse recordings confirmed that sperm swim around the perivitelline space before fertilization. Experimental enlargement of the perivitelline space in the non-polar body half increased the regional probability of fertilization. Based on these experiments, we propose a model in which the space asymmetry exerted by the first polar body and the zona pellucida directs sperm entry preferentially to the polar body half, with no need for oocyte polarity.


The International Journal of Developmental Biology | 2008

Hypomethylation of paternal DNA in the late mouse zygote is not essential for development

Zbigniew Polanski; Nami Motosugi; Chizuko Tsurumi; Takashi Hiiragi; Steffen Hoffmann

Global demethylation of DNA which marks the onset of development occurs asynchronously in the mouse; paternal DNA is demethylated at the the zygote stage, whereas maternal DNA is demethylated later in development. The biological function of such asymmetry and its underlying mechanisms are currently unknown. To test the hypothesis that the early demethylation of male DNA may be associated with protamine-histone exchange, we ,used round spermatids, whose DNA is still associated with histones, for artificial fertilization (round spermatid injection or ROSI), and compared the level of methylation of metaphase chromosomes in the resulting zygotes with the level of methylation in zygotes obtained after fertilization using mature sperm heads (intracytoplasmic sperm injection or ICSI). In contrast to ICSI-derived zygotes, ROSI-derived zygotes possessed only slightly demethylated paternal DNA. Both types of zygotes developed to term with similar rates which shows that hypomethylation of paternal DNA at the zygotic metaphase is not essential for full development in mice. Incorporation of exogenously expressed histone H2BYFP into paternal pronuclei was significantly higher in ICSI-derived zygotes than in ROSI-derived zygotes. Surprisingly, in the latter the incorporation of histone H2BYFP into the paternal pronucleus was still significantly higher than into the maternal pronucleus, suggesting that some exchange of chromatin-associated proteins occurs not only after ICSI but also after ROSI. This may explain why after ROSI, some transient demethylation of paternal DNA occurs early after fertilization, thus providing support for the hypothesis regarding the link between paternal DNA demethylation and protamine/histone exchange.


Biology of Reproduction | 2006

The First Mitosis of the Mouse Embryo Is Prolonged by Transitional Metaphase Arrest

Marta Sikora-Polaczek; Anna Hupalowska; Zbigniew Polanski; Jacek Z. Kubiak; Maria A. Ciemerych

Abstract The first mitosis of the mouse embryo is almost twice as long as the second. The mechanism of the prolongation of the first mitosis remains unknown, and it is not clear whether prometaphase or metaphase or both are prolonged. Prometaphase is characterized by dynamic chromosome movements and spindle assembly checkpoint activity, which prevents anaphase until establishment of stable kinetochore-microtubule connections. The end of prometaphase is correlated with checkpoint inactivation and disappearance of MAD2L1 (MAD2) and RSN (CLIP-170) proteins from kinetochores. Spindle assembly checkpoint operates during the early mouse mitoses, but it is not clear whether it influences their duration. Here, we determine the length of prometaphases and metaphases during the first two embryonic mitoses by time-lapse video recording of chromosomes and by immunolocalization of MAD2L1 and RSN proteins. We show that the duration of the two prometaphases does not differ and that MAD2L1 and RSN disappear from kinetochores very early during each mitosis. The first metaphase is significantly longer than the second one. Therefore, the prolongation of the first embryonic mitosis is due to a prolonged metaphase, and the spindle assembly checkpoint cannot be involved in this process. We show also that MAD2L1 staining disappears gradually from kinetochores of oocytes arrested at metaphase of the second meiotic division. This shows a striking similarity between the first embryonic mitosis and metaphase arrest in oocytes. We postulate that the first embryonic mitosis is prolonged by a transient metaphase arrest that is independent of the spindle assembly checkpoint and is similar to metaphase II arrest. The molecular mechanism of this transient arrest remains to be elucidated.


PLOS ONE | 2011

A single bivalent efficiently inhibits cyclin B1 degradation and polar body extrusion in mouse oocytes indicating robust SAC during female meiosis I.

Steffen Hoffmann; Bernard Maro; Jacek Z. Kubiak; Zbigniew Polanski

The Spindle Assembly Checkpoint (SAC) inhibits anaphase until microtubule-to-kinetochore attachments are formed, thus securing correct chromosome separation and preventing aneuploidy. Whereas in mitosis even a single unattached chromosome keeps the SAC active, the high incidence of aneuploidy related to maternal meiotic errors raises a concern about the lower efficiency of SAC in oocytes. Recently it was suggested that in mouse oocytes, contrary to somatic cells, not a single chromosome but a critical mass of chromosomes triggers efficient SAC pointing to the necessity of evaluating the robustness of SAC in oocytes. Two types of errors in chromosome segregation upon meiosis I related to SAC were envisaged: (1) SAC escape, when kinetochores emit SAC-activating signal unable to stop anaphase I; and (2) SAC deceive, when kinetochores do not emit the signal. Using micromanipulations and live imaging of the first polar body extrusion, as well as the dynamics of cyclin B1 degradation, here we show that in mouse oocytes a single bivalent keeps the SAC active. This is the first direct evaluation of SAC efficiency in mouse oocytes, which provides strong evidence that the robustness of SAC in mammalian oocytes is comparable to other cell types. Our data do not contradict the hypothesis of the critical mass of chromosomes necessary for SAC activation, but suggest that the same rule may govern SAC activity also in other cell types. We postulate that the innate susceptibility of oocytes to errors in chromosome segregation during the first meiotic division may not be caused by lower efficiency of SAC itself, but could be linked to high critical chromosome mass necessary to keep SAC active in oocyte of large size.


Biology of Reproduction | 2008

Metaphase I arrest in LT/Sv mouse oocytes involves the spindle assembly checkpoint.

Anna Hupalowska; Ilona Kalaszczynska; Steffen Hoffmann; Chizuko Tsurumi; Jacek Z. Kubiak; Zbigniew Polanski; Maria A. Ciemerych

Abstract During meiotic maturation, the majority of oocytes from LT/Sv mice arrest at metaphase I. However, anaphase may be induced through parthenogenetic activation. If this happens within the ovary, it often results in the development of ovarian teratomas. Here, we show that the induction of first meiotic anaphase in LT/Sv oocytes results in incorrect chromosome segregation. In search of the molecular basis of this complex phenotype, we analyzed the localization/destruction of cohesins, as well as the function of the components of the spindle assembly checkpoint (SAC). Both localization and removal of meiotic cohesin REC8 from chromosomes are unperturbed. In contrast, there is prolonged localization of SAC proteins BUB1 and MAD2L1 (MAD2) at the metaphase I kinetochores in mutant oocytes compared with the wild-type. Interfering with BUB1 function through expression of a dominant-negative mutant protein resulted in the increase of the number of LT/Sv oocytes completing the first meiosis, which indicates SAC involvement in metaphase I arrest. These data show for the first time that there is a direct link between the SAC function and the heritable meiotic incompetence of a mammalian oocyte.


Cell Transplantation | 2012

Restricted Myogenic Potential of Mesenchymal Stromal Cells Isolated From Umbilical Cord

Iwona Grabowska; Edyta Brzoska; Agnieszka Gawrysiak; Wladyslawa Streminska; Jerzy Moraczewski; Zbigniew Polanski; Grazyna Hoser; Jerzy Kawiak; Eugeniusz K. Machaj; Zygmunt Pojda; Maria A. Ciemerych

Nonhematopoietic cord blood cells and mesenchymal cells of umbilical cord Whartons jelly have been shown to be able to differentiate into various cell types. Thus, as they are readily available and do not raise any ethical issues, these cells are considered to be a potential source of material that can be used in regenerative medicine. In our previous study, we tested the potential of whole mononucleated fraction of human umbilical cord blood cells and showed that they are able to participate in the regeneration of injured mouse skeletal muscle. In the current study, we focused at the umbilical cord mesenchymal stromal cells isolated from Whartons jelly. We documented that limited fraction of these cells express markers of pluripotent and myogenic cells. Moreover, they are able to undergo myogenic differentiation in vitro, as proved by coculture with C2C12 myoblasts. They also colonize injured skeletal muscle and, with low frequency, participate in the formation of new muscle fibers. Pretreatment of Whartons jelly mesenchymal stromal cells with SDF-1 has no impact on their incorporation into regenerating muscle fibers but significantly increased muscle mass. As a result, transplantation of mesenchymal stromal cells enhances the skeletal muscle regeneration.


Folia Histochemica Et Cytobiologica | 2008

Temporal regulation of embryonic M-phases.

Jacek Z. Kubiak; Franck Bazile; Aude Pascal; Laurent Richard-Parpaillon; Zbigniew Polanski; Maria A. Ciemerych; Franck Chesnel

Temporal regulation of M-phases of the cell cycle requires precise molecular mechanisms that differ among different cells. This variable regulation is particularly clear during embryonic divisions. The first embryonic mitosis in the mouse lasts twice as long as the second one. In other species studied so far (C. elegans, Sphaerechinus granularis, Xenopus laevis), the first mitosis is also longer than the second, yet the prolongation is less pronounced than in the mouse. We have found recently that the mechanisms prolonging the first embryonic M-phase differ in the mouse and in Xenopus embryos. In the mouse, the metaphase of the first mitosis is specifically prolonged by the unknown mechanism acting similarly to the CSF present in oocytes arrested in the second meiotic division. In Xenopus, higher levels of cyclins B participate in the M-phase prolongation, however, without any cell cycle arrest. In Xenopus embryo cell-free extracts, the inactivation of the major M-phase factor, MPF, depends directly on dissociation of cyclin B from CDK1 subunit and not on cyclin B degradation as was thought before. In search for other mitotic proteins behaving in a similar way as cyclins B we made two complementary proteomic screens dedicated to identifying proteins ubiquitinated and degraded by the proteasome upon the first embryonic mitosis in Xenopus laevis. The first screen yielded 175 proteins. To validate our strategy we are verifying now which of them are really ubiquitinated. In the second one, we identified 9 novel proteins potentially degraded via the proteasome. Among them, TCTP (Translationally Controlled Tumor Protein), a 23-kDa protein, was shown to be partially degraded during mitosis (as well as during meiotic exit). We characterized the expression and the role of this protein in Xenopus, mouse and human somatic cells, Xenopus and mouse oocytes and embryos. TCTP is a mitotic spindle protein positively regulating cellular proliferation. Analysis of other candidates is in progress.

Collaboration


Dive into the Zbigniew Polanski's collaboration.

Top Co-Authors

Avatar

Jacek Z. Kubiak

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge