Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zdenek Kamenik is active.

Publication


Featured researches published by Zdenek Kamenik.


International Journal of Pharmaceutics | 2011

Perivascular sirolimus-delivery system.

Elena Filova; Martin Parizek; Zdenek Kamenik; Eduard Brynda; Tomáš Riedel; Marta Vandrovcová; Vera Lisa; Ludka Machova; Ivo Skalsky; Ondrej Szarszoi; Tomas Suchy; Lucie Bacakova

Autologous vein grafts are often used for treating damaged vessels, e.g. arteriovenous fistulas or arterial bypass conduits. Veins have a different histological structure from arteries, which often leads to intimal hyperplasia and graft restenosis. The aim of this study was to develop a perivascular sirolimus-delivery system that would release the antiproliferative drug sirolimus in a controlled manner. Polyester Mesh I was coated with purasorb, i.e. a copolymer of L-lactide and ɛ-caprolactone, with dissolved sirolimus; Mesh II was coated with two copolymer layers; the layer with dissolved sirolimus was overlaid with pure purasorb. This arrangement allowed sirolimus to be released for 6 and 4 weeks, for Mesh I and Mesh II, respectively. Mesh II released sirolimus more homogeneously, without the initial burst effect during the first week. However, the cumulative release curve was steeper at later time points than the curve for Mesh I. Both meshes inhibited proliferation of rat vascular smooth muscle cells during 14-day culture in vitro and preserved excellent cell viability. Newly developed sirolimus-releasing perivascular meshes are promising devices for preventing autologous graft restenosis.


PLOS ONE | 2015

Lincosamide Synthetase—A Unique Condensation System Combining Elements of Nonribosomal Peptide Synthetase and Mycothiol Metabolism

Jiri Janata; Stanislav Kadlcik; Marketa Koberska; Dana Ulanova; Zdenek Kamenik; Petr Novák; Jan Kopecky; Jitka Novotna; Bojana Radojevic; Kamila Plháčková; Radek Gazak; Lucie Najmanova

In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system.


Frontiers in Microbiology | 2016

New Concept of the Biosynthesis of 4-Alkyl-L-Proline Precursors of Lincomycin, Hormaomycin, and Pyrrolobenzodiazepines: Could a γ-Glutamyltransferase Cleave the C–C Bond?

Petra Jiraskova; Radek Gazak; Zdenek Kamenik; Lucie Steiningerova; Lucie Najmanova; Stanislav Kadlcik; Jitka Novotna; Marek Kuzma; Jiri Janata

Structurally different and functionally diverse natural compounds – antitumour agents pyrrolo[1,4]benzodiazepines, bacterial hormone hormaomycin, and lincosamide antibiotic lincomycin – share a common building unit, 4-alkyl-L-proline derivative (APD). APDs arise from L-tyrosine through a special biosynthetic pathway. Its generally accepted scheme, however, did not comply with current state of knowledge. Based on gene inactivation experiments and in vitro functional tests with recombinant enzymes, we designed a new APD biosynthetic scheme for the model of lincomycin biosynthesis. In the new scheme at least one characteristic in each of five final biosynthetic steps has been changed: the order of reactions, assignment of enzymes and/or reaction mechanisms. First, we demonstrate that LmbW methylates a different substrate than previously assumed. Second, we propose a unique reaction mechanism for the next step, in which a putative γ-glutamyltransferase LmbA indirectly cleaves off the oxalyl residue by transient attachment of glutamate to LmbW product. This unprecedented mechanism would represent the first example of the C–C bond cleavage catalyzed by a γ-glutamyltransferase, i.e., an enzyme that appears unsuitable for such activity. Finally, the inactivation experiments show that LmbX is an isomerase indicating that it transforms its substrate into a compound suitable for reduction by LmbY, thereby facilitating its subsequent complete conversion to APD 4-propyl-L-proline. Elucidation of the APD biosynthesis has long time resisted mainly due to the apparent absence of relevant C–C bond cleaving enzymatic activity. Our proposal aims to unblock this situation not only for lincomycin biosynthesis, but generally for all above mentioned groups of bioactive natural products with biotechnological potential.


PLOS ONE | 2013

Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

Jitka Novotna; Petr Novák; Peter Mojzeš; Radka Chaloupková; Zdenek Kamenik; Jaroslav Spizek; Eva Kutejová; Markéta Marečková; Pavel Tichy; Jiri Damborsky; Jiri Janata

The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis.


Applied and Environmental Microbiology | 2011

Microbial Communities Show Parallels at Sites with Distinct Litter and Soil Characteristics

Marketa Sagova-Mareckova; Marek Omelka; Ladislav Cermak; Zdenek Kamenik; Evelyn Hackl; Jan Kopecky; Franz Hadacek

ABSTRACT Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearmans test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.


Frontiers in Cellular Neuroscience | 2016

Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System

Martin Valny; Pavel Honsa; Denisa Kirdajova; Zdenek Kamenik; Miroslava Anderova

The tamoxifen-inducible Cre-loxP system is widely used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time-points, and to visualize and trace cells in fate-mapping studies. In this study we focused on tamoxifen degradation kinetics, because for all genetic fate-mapping studies, the period during which tamoxifen or its metabolites remain active in the CNS, is essential. Additionally, we aimed to define the tamoxifen administration scheme, enabling the maximal recombination rate together with minimal animal mortality. The time window between tamoxifen injection and the beginning of experiments should be large enough to allow complete degradation of tamoxifen and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the optimal time window, allowing the complete degradation of tamoxifen and its metabolites, such as 4-hydroxytamoxifen, N-desmethyltamoxifen, endoxifen and norendoxifen, in the mouse brain after intraperitoneal tamoxifen injection. We determined the biological activity of these substances in vitro, as well as a minimal effective concentration of the most potent metabolite 4-hydroxytamoxifen causing recombination in vivo. For this purpose, we analyzed the recombination rate in double transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography, coupled with mass spectrometry, to determine the concentration of studied substances in the brain. We determined the degradation kinetics of these substances, and revealed that this process is influenced by mouse strains, age of animals, and dosage. Our results revealed that tamoxifen and its metabolites were completely degraded within 8 days in young adult C57BL/6J mice, while the age-matched FVB/NJ male mice displayed more effective degradation. Moreover, aged C57BL/6J mice were unable to metabolize all substances within 8 days. The lowering of initial tamoxifen dose leads to a significantly faster degradation of all studied substances. A disruption of the blood-brain barrier caused no concentration changes of any tamoxifen metabolites in the ipsilateral hemisphere. Taken together, we showed that tamoxifen metabolism in mouse brains is age-, strain- and dose-dependent, and these factors should be taken into account in the experimental design.


ACS Chemical Biology | 2017

Diversity of Alkylproline Moieties in Pyrrolobenzodiazepines Arises from Postcondensation Modifications of a Unified Building Block

Zdenek Kamenik; Stanislav Kadlcik; Radek Gazak; Simon Vobruba; Lucie Palanova; Marek Kuzma; Jiri Janata

Anticancer pyrrolobenzodiazepines (PBDs) are one of several groups of natural products that contain unusual 4-alkyl-l-proline derivatives (APDs) in their structure. APD moieties of PBDs are characterized by high structural diversity achieved through unknown biosynthetic machinery. Based on LC-MS analysis of culture broths, feeding experiments, and protein assays, we show that APDs are not incorporated into PBDs in their final form as was previously hypothesized. Instead, a uniform building block, 4-propylidene-l-proline or 4-ethylidene-l-proline, enters the condensation reaction. The subsequent postcondensation steps are initiated by the introduction of an additional double bond catalyzed by a FAD-dependent oxidoreductase, which we demonstrated with Orf7 from anthramycin biosynthesis. The resulting double bond arrangement presumably represents a prerequisite for further modifications of the APD moieties. Our study gives general insight into the diversification of APD moieties of natural PBDs and provides proof-of-principle for precursor directed and combinatorial biosynthesis of new PBD-based antitumor compounds.


Scientific Reports | 2018

Novel pathway of 3-hydroxyanthranilic acid formation in limazepine biosynthesis reveals evolutionary relation between phenazines and pyrrolobenzodiazepines

Magdalena Pavlikova; Zdenek Kamenik; Jiri Janata; Stanislav Kadlcik; Marek Kuzma; Lucie Najmanova

Natural pyrrolobenzodiazepines (PBDs) form a large and structurally diverse group of antitumour microbial metabolites produced through complex pathways, which are encoded within biosynthetic gene clusters. We sequenced the gene cluster of limazepines and proposed their biosynthetic pathway based on comparison with five available gene clusters for the biosynthesis of other PBDs. Furthermore, we tested two recombinant proteins from limazepine biosynthesis, Lim5 and Lim6, with the expected substrates in vitro. The reactions monitored by LC-MS revealed that limazepine biosynthesis involves a new way of 3-hydroxyanthranilic acid formation, which we refer to as the chorismate/DHHA pathway and which represents an alternative to the kynurenine pathway employed for the formation of the same precursor in the biosynthesis of other PBDs. The chorismate/DHHA pathway is presumably also involved in the biosynthesis of PBD tilivalline, several natural products unrelated to PBDs, and its part is shared also with phenazine biosynthesis. The similarities between limazepine and phenazine biosynthesis indicate tight evolutionary links between these groups of compounds.


Nature Communications | 2018

C-C bond cleavage in biosynthesis of 4-alkyl- L -proline precursors of lincomycin and anthramycin cannot precede C -methylation

Zdenek Kamenik; Radek Gazak; Stanislav Kadlcik; Lucie Steiningerova; Vit Rynd; Jiri Janata

Zhong et al.1 confirmed that γ-glutamyltranspeptidase (γ-GTs) homologs are capable of cleaving a C–C bond, which was previously inferred by Jiraskova et al.2 in 2016 in a study based on gene inactivation experiments. The intriguing C–C bond cleavage catalyzed by LmbA and Ant6 γ-GT homologs from the biosynthesis of lincomycin A and anthramycin, respectively, was conclusively documented by Zhong et al.1. However, assignment of 2/3 as the LmbA and Ant6 substrate and 4/5 as the reaction product is questionable for several reasons; most importantly, it contradicts the current state of knowledge of the biosynthesis of 4-alkyl-L-proline derivatives (ALDP or APD used in previous literature; Fig. 1a)2. Here, we argue that LmbA/Ant6 γ-GT homologs do not utilize 2/3, but intermediate 9/10, which was previously proposed to be the main native substrate of LmbA2 and which is biosynthesized from 2/3 by a C-methylation reaction. Consequently, the main LmbA/Ant6 product is not 4/5 but compound 12, which is a subject of isomerization in order to proceed towards the final ALDP of lincomycin A and anthramycin. Here, we bring evidence that 2/3 is not the main native substrate of LmbA/Ant6 γ-GT homologs, but of LmbW/Ant5 Cmethyltransferases. Indeed, we observed in vitro C-methylation of 2/3 by LmbW affording 9/10 and we also detected intermediate 9/10 in the cultivation broth of the ΔlmbA mutant of lincomycin producing strain Streptomyces lincolnensis (Fig. 1b). Even though the conversion of 2/3 into 9/10 by LmbW was only partial, it clearly showed that 2/3 serves as an LmbW/ Ant5 substrate. To support that conversion of 2/3 by LmbW is not a side reaction resulting from broader substrate specificity of LmbW and that its main native substrate is indeed 2/3 and not 4/ 5 as the work by Zhong et al.1 suggests, we carried out a bioinformatic analysis of LmbW/Ant5. We found out that LmbW/Ant5 and their homologs (SibZ3, HrmC4, and Por105) from the biosyntheses of other ALDPs are similar to ALDPunrelated C-methyltransferases MppJ with known structure6 and MrsA7 (26% identity to LmbW according to BLAST for both MppJ and MrsA along the whole sequence; sequence alignment of LmbW and MppJ is available in Supplementary Fig. 1). MppJ and MrsA methylate phenylpyruvic and 5-guanidino-2oxopentanoic acids, respectively, i.e., substrates structurally analogous to 2/3 and not 4/5. Furthermore, methylation of phenylpyruvic acid catalyzed by MppJ is part of the biosynthesis of β-methyl-L-phenylalanine from L-phenylalanine8. Instead of direct methylation of L-phenylalanine, the machinery requires to proceed via phenylpyruvic acid, indicating the importance of the α-keto(enol)-carboxylic moiety of phenylpyruvic acid for the MppJ-catalyzed methylation. We propose that the same applies also to LmbW/Ant5 because their substrate 2/3 also contains the α-keto(enol)-carboxylic moiety. Importantly, conversion of the analogous substrates of MppJ and LmbW/Ant5 through a common reaction mechanism is supported by comparison of the active sites of MppJ (based on the protein crystal structure)6 vs. LmbW (based on a homology model) depicted in Fig. 2. The α-keto(enol)-carboxylic moiety appears to play an important role in fixation of the substrate within the active site not only in the case of MppJ, but also LmbW/Ant5. All these enzymes share the residues important for α-keto(enol)-carboxylic moiety fixation as well as the methylation (four residues depicted in blue in Fig. 2c, d). In contrast to 9/10, intermediate 4/5 (proposed as the LmbA/Ant6 reaction product and thus the LmbW/Ant5 substrate by Zhong et al.1) does not possess the α-keto(enol)-carboxylic moiety for the substrate fixation in the active site. Moreover, the methylation of 4/5 would have to proceed through a different mechanism than reactions catalyzed by MppJ and MrsA, which would be inconsistent with the high conservation of the key catalytic residues within the active sites of MppJ and LmbW/Ant5. Based on the above-mentioned arguments, we claim that 2/3 is first C-methylated by LmbW/Ant5 and the reaction product 9/10 is utilized as a substrate of LmbA/ Ant6 γ-GT homologs. However, 2/3 can serve as a minor substrate of LmbA if the C-methylation step is omitted and lincomycin B9, a side product of lincomycin A biosynthesis, is formed. Similarly, 2/3 undergoes C–C bond cleavage if the C-methyltransferase is not encoded within the biosynthetic gene cluster, which applies to the biosynthesis of e.g., tomaymycin10,11 and DOI: 10.1038/s41467-018-05455-3 OPEN


BMC Microbiology | 2015

Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria

Marketa Sagova-Mareckova; Dana Ulanova; Petra Sanderova; Marek Omelka; Zdenek Kamenik; Jan Kopecky

BackgroundDistribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions.ResultsNinety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene.ConclusionsThe type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.

Collaboration


Dive into the Zdenek Kamenik's collaboration.

Top Co-Authors

Avatar

Jiri Janata

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Stanislav Kadlcik

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Radek Gazak

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Kopecky

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lucie Najmanova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Marek Kuzma

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Bojana Radojevic

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jitka Novotna

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Marek Omelka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Lucie Steiningerova

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge