Zdenko Herceg
International Agency for Research on Cancer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zdenko Herceg.
Nature Cell Biology | 2006
Rabih Murr; Joanna I. Loizou; Yun-Gui Yang; Cyrille Cuenin; Hai Li; Zhao-Qi Wang; Zdenko Herceg
DNA is packaged into chromatin, a highly compacted DNA–protein complex; therefore, all cellular processes that use the DNA as a template, including DNA repair, require a high degree of coordination between the DNA-repair machinery and chromatin modification/remodelling, which regulates the accessibility of DNA in chromatin. Recent studies have implicated histone acetyltransferase (HAT) complexes and chromatin acetylation in DNA repair; however, the precise underlying mechanism remains poorly understood. Here, we show that the HAT cofactor Trrap and Tip60 HAT bind to the chromatin surrounding sites of DNA double-strand breaks (DSBs) in vivo. Trrap depletion impairs both DNA-damage-induced histone H4 hyperacetylation and accumulation of repair molecules at sites of DSBs, resulting in defective homologous recombination (HR) repair, albeit with the presence of a functional ATM-dependent DNA-damage signalling cascade. Importantly, the impaired loading of repair proteins and the defect in DNA repair in Trrap-deficient cells can be counteracted by chromatin relaxation, indicating that the DNA-repair defect that was observed in the absence of Trrap is due to impeded chromatin accessibility at sites of DNA breaks. Thus, these data reveal that cells may use the same basic mechanism involving HAT complexes to regulate distinct cellular processes, such as transcription and DNA repair.
Mutation Research-reviews in Mutation Research | 2008
Thomas Vaissière; Carla Sawan; Zdenko Herceg
Knowledge on heritable changes in gene expression that result from epigenetic events is of increasing relevance in the development of strategies for prevention, early diagnosis and treatment of cancer. Histone acetylation and DNA methylation are epigenetic modifications whose patterns can be regarded as heritable marks that ensure accurate transmission of the chromatin states and gene expression profiles over many cell generations. Importantly, patterns and levels of DNA methylation and histone acetylation are profoundly altered in human cancers. Accumulating evidence suggests that an epigenetic cross-talk, i.e. interplay between DNA methylation and histone acetylation, may be involved in the process of gene transcription and aberrant gene silencing in tumours. Although the molecular mechanism of gene activation is relatively well understood, the hierarchical order of events and dependencies leading to gene silencing in the course of cancer development remain largely unknown. While some studies suggest that DNA methylation patterns guide histone modifications (including histone acetylation and methylation) during gene silencing, other studies argue that DNA methylation takes its cues primarily from histone modification states. In this review, we summarize current knowledge on the interplay between DNA methylation and histone modifications during gene silencing and its importance in the integration of environmental and intrinsic stimuli in the control of gene expression. We also discuss the importance of an epigenetic cross-talk in the protection against genetic changes in response to environmental genotoxins as well as the implication for cancer therapy and prevention.
Nature Medicine | 1999
Volker Burkart; Zhao-Qi Wang; Jürgen Radons; Birgit Heller; Zdenko Herceg; Laura Stingl; Erwin F. Wagner; Hubert Kolb
Human type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta cells during islet inflammation. Cytokines and reactive radicals released during this process contribute to beta-cell death. Here we show that mice with a disrupted gene coding for poly (ADP-ribose) polymerase (PARP–/– mice) are completely resistant to the development of diabetes induced by the beta-cell toxin streptozocin. The mice remained normoglycemic and maintained normal levels of total pancreatic insulin content and normal islet ultrastructure. Cultivated PARP–/– islet cells resisted streptozocin-induced lysis and maintained intracellular NAD+ levels. Our results identify NAD+ depletion caused by PARP activation as the dominant metabolic event in islet-cell destruction, and provide information for the development of strategies to prevent the progression or manifestation of the disease in individuals at risk of developing type 1 diabetes.
Mutation Research | 2001
Zdenko Herceg; Zhao-Qi Wang
Poly(ADP-ribose) polymerase (PARP) is responsible for post-translational modification of proteins in the response to numerous endogenous and environmental genotoxic agents. PARP and poly(ADP-ribosyl)ation are proposed to be important for the regulation of many cellular processes such as DNA repair, cell death, chromatin functions and genomic stability. Activation of PARP is one of the early DNA damage responses, among other DNA sensing molecules, such as DNA-PK, ATM and p53. The generation and characterization of PARP deficient mouse models have been instrumental in defining the biological role of the molecule and its involvement in the pathogenesis of various diseases including diabetes, stroke, Parkinson disease, general inflammation as well as tumorigenesis, and have, therefore, provided information for the development of pharmaceutical strategies for the treatment of diseases.
Molecular and Cellular Biology | 1999
Zdenko Herceg; Zhao-Qi Wang
ABSTRACT Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.
Cancer Research | 2009
Thomas Vaissière; Rayjean J. Hung; David Zaridze; Anush Moukeria; Cyrille Cuenin; Virginie Fasolo; Gilles Ferro; Anupam Paliwal; Pierre Hainaut; Paul Brennan; Jörg Tost; Paolo Boffetta; Zdenko Herceg
The global increase in lung cancer burden, together with its poor survival and resistance to classical chemotherapy, underscores the need for identification of critical molecular events involved in lung carcinogenesis. Here, we have applied quantitative profiling of DNA methylation states in a panel of five cancer-associated genes (CDH1, CDKN2A, GSTP1, MTHFR, and RASSF1A) to a large case-control study of lung cancer. Our analyses revealed a high frequency of aberrant hypermethylation of MTHFR, RASSF1A, and CDKN2A in lung tumors as compared with control blood samples, whereas no significant increase in methylation levels of GSTP1 and CDH1 was observed, consistent with the notion that aberrant DNA methylation occurs in a tumor-specific and gene-specific manner. Importantly, we found that tobacco smoking, sex, and alcohol intake had a strong influence on the methylation levels of distinct genes (RASSF1A and MTHFR), whereas folate intake, age, and histologic subtype had no significant influence on methylation states. We observed a strong association between MTHFR hypermethylation in lung cancer and tobacco smoking, whereas methylation levels of CDH1, CDKN2A, GSTP1, and RASSF1A were not associated with smoking, indicating that tobacco smoke targets specific genes for hypermethylation. We also found that methylation levels in RASSF1A, but not the other genes under study, were influenced by sex, with males showing higher levels of methylation. Together, this study identifies aberrant DNA methylation patterns in lung cancer and thus exemplifies the mechanism by which environmental factors may interact with key genes involved in tumor suppression and contribute to lung cancer.
PLOS ONE | 2010
Hector Hernandez-Vargas; Marie Pierre Lambert; Florence Le Calvez-Kelm; Géraldine Gouysse; Sandrine McKay-Chopin; Sean V. Tavtigian; Jean-Yves Scoazec; Zdenko Herceg
Background Hepatocellular carcinoma (HCC) is characterized by late detection and fast progression, and it is believed that epigenetic disruption may be the cause of its molecular and clinicopathological heterogeneity. A better understanding of the global deregulation of methylation states and how they correlate with disease progression will aid in the design of strategies for earlier detection and better therapeutic decisions. Methods and Findings We characterized the changes in promoter methylation in a series of 30 HCC tumors and their respective surrounding tissue and identified methylation signatures associated with major risk factors and clinical correlates. A wide panel of cancer-related gene promoters was analyzed using Illumina bead array technology, and CpG sites were then selected according to their ability to classify clinicopathological parameters. An independent series of HCC tumors and matched surrounding tissue was used for validation of the signatures. We were able to develop and validate a signature of methylation in HCC. This signature distinguished HCC from surrounding tissue and from other tumor types, and was independent of risk factors. However, aberrant methylation of an independent subset of promoters was associated with tumor progression and etiological risk factors (HBV or HCV infection and alcohol consumption). Interestingly, distinct methylation of an independent panel of gene promoters was strongly correlated with survival after cancer therapy. Conclusion Our study shows that HCC tumors exhibit specific DNA methylation signatures associated with major risk factors and tumor progression stage, with potential clinical applications in diagnosis and prognosis.
Molecular and Cellular Biology | 2004
Ulrich Cortes; Wei-Min Tong; Donna L. Coyle; Mirella L. Meyer-Ficca; Ralph G. Meyer; Virginie Petrilli; Zdenko Herceg; Elaine L. Jacobson; Myron K. Jacobson; Zhao-Qi Wang
ABSTRACT Poly(ADP-ribosylation) is rapidly stimulated in cells following DNA damage. This posttranslational modification is regulated by the synthesizing enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the degrading enzyme poly(ADP-ribose) glycohydrolase (PARG). Although the role of PARP-1 in response to DNA damage has been studied extensively, the function of PARG and the impact of poly(ADP-ribose) homeostasis in various cellular processes are largely unknown. Here we show that by gene targeting in embryonic stem cells and mice, we specifically deleted the 110-kDa PARG protein (PARG110) normally found in the nucleus and that depletion of PARG110 severely compromised the automodification of PARP-1 in vivo. PARG110-deficient mice were viable and fertile, but these mice were hypersensitive to alkylating agents and ionizing radiation. In addition, these mice were susceptible to streptozotocin-induced diabetes and endotoxic shock. These data indicate that PARG110 plays an important role in DNA damage responses and in pathological processes.
Epigenetics | 2011
Zdenko Herceg; Thomas Vaissière
Although epidemiological studies support the role of environment in a wide range of human cancers, the precise mechanisms by which environmental exposures promote cancer development and progression remain poorly understood. Environmental factors have been proposed to promote the development of malignancies by eliciting epigenetic changes; however, it is only with recent advances in epigenetics and epigenomics that target genes and the mechanisms underlying environmental influences are beginning to be elucidated. Because epigenetic mechanisms may function as an interface between environmental factors and the genome, deregulation of the epigenome by environmental stressors is likely to disrupt different cellular processes and contribute to cancer risk. In addition, the early appearance and ubiquity of epigenetic changes in virtually all steps of tumor development and progression in most, if not all, human neoplasms, make them attractive targets for biomarker discovery and targeted prevention. At the cellular level, aberrant epigenetic changes associated with environmental exposures may deregulate key cellular processes (including transcriptional control, DNA repair, cell cycle control, and carcinogen detoxification), which can be further modulated by environmental stressors, thus defining not only the phenotype of the disease but also potential biomarkers. This review summarizes recent progress in our understanding of the epigenetic mechanisms through which environmental factors may promote tumor development, with a particular focus on human lung cancer.
Journal of Cell Biology | 2007
Mathieu Tardat; Rabih Murr; Zdenko Herceg; Claude Sardet; Eric Julien
PR-Set7/SET8 is a histone H4–lysine 20 methyltransferase required for normal cell proliferation. However, the exact functions of this enzyme remain to be determined. In this study, we show that human PR-Set7 functions during S phase to regulate cellular proliferation. PR-Set7 associates with replication foci and maintains the bulk of H4-K20 mono- and trimethylation. Consistent with a function in chromosome dynamics during S phase, inhibition of PR-Set7 methyltransferase activity by small hairpin RNA causes a replicative stress characterized by alterations in replication fork velocity and origin firing. This stress is accompanied by massive induction of DNA strand breaks followed by a robust DNA damage response. The DNA damage response includes the activation of ataxia telangiectasia mutated and ataxia telangiectasia related kinase–mediated pathways, which, in turn, leads to p53-mediated growth arrest to avoid aberrant chromosome behavior after improper DNA replication. Collectively, these data indicate that PR-Set7–dependent lysine methylation during S phase is an essential posttranslational mechanism that ensures genome replication and stability.