Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ze-Chun Yuan is active.

Publication


Featured researches published by Ze-Chun Yuan.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium

Ze-Chun Yuan; Merritt P. Edlind; Pu Liu; Panatda Saenkham; Lois M. Banta; Arlene A. Wise; Erik Ronzone; Andrew N. Binns; Kathleen F. Kerr; Eugene W. Nester

Agrobacterium tumefaciens is capable of transferring and integrating an oncogenic T-DNA (transferred DNA) from its tumor-inducing (Ti) plasmid into dicotyledonous plants. This transfer requires that the virulence genes (vir regulon) be induced by plant signals such as acetosyringone in an acidic environment. Salicylic acid (SA) is a key signal molecule in regulating plant defense against pathogens. However, how SA influences Agrobacterium and its interactions with plants is poorly understood. Here we show that SA can directly shut down the expression of the vir regulon. SA specifically inhibited the expression of the Agrobacterium virA/G two-component regulatory system that tightly controls the expression of the vir regulon including the repABC operon on the Ti plasmid. We provide evidence suggesting that SA attenuates the function of the VirA kinase domain. Independent of its effect on the vir regulon, SA up-regulated the attKLM operon, which functions in degrading the bacterial quormone N-acylhomoserine lactone. Plants defective in SA accumulation were more susceptible to Agrobacterium infection, whereas plants overproducing SA were relatively recalcitrant to tumor formation. Our results illustrate that SA, besides its well known function in regulating plant defense, can also interfere directly with several aspects of the Agrobacterium infection process.


Nucleic Acids Research | 2006

Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria.

Ze-Chun Yuan; Rahat Zaheer; Richard T Morton; Turlough M. Finan

In proteobacteria, genes whose expression is modulated in response to the external concentration of inorganic phosphate are often regulated by the PhoB protein which binds to a conserved motif (Pho box) within their promoter regions. Using a position weight matrix algorithm derived from known Pho box sequences, we identified 96 putative Pho regulon members whose promoter regions contained one or more Pho boxs in the Sinorhizobium meliloti genome. Expression of these genes was examined through assays of reporter gene fusions and through comparison with published microarray data. Of 96 genes, 31 were induced and 3 were repressed by Pi starvation in a PhoB dependent manner. Novel Pho regulon members included several genes of unknown function. Comparative analysis across 12 proteobacterial genomes revealed highly conserved Pho regulon members including genes involved in Pi metabolism (pstS, phnC and ppdK). Genes with no obvious association with Pi metabolism were predicted to be Pho regulon members in S.meliloti and multiple organisms. These included smc01605 and smc04317 which are annotated as substrate binding proteins of iron transporters and katA encoding catalase. This data suggests that the Pho regulon overlaps and interacts with several other control circuits, such as the oxidative stress response and iron homeostasis.


Cellular Microbiology | 2008

Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole‐3‐acetic acid and γ‐amino butyric acid reveals signalling cross‐talk and Agrobacterium–plant co‐evolution

Ze-Chun Yuan; Elise Haudecoeur; Denis Faure; Kathleen F. Kerr; Eugene W. Nester

Agrobacterium has evolved sophisticated strategies to perceive and transduce plant‐derived cues. Recent studies have found that numerous plant signals, including salicylic acid (SA), indole‐3‐acetic acid (IAA) and γ‐amino butyric acid (GABA), profoundly affect Agrobacterium–plant interactions. Here we determine and compare the transcriptome profiles of Agrobacterium in response to these three plant signals. Collectively, the transcription of 103, 115 and 95 genes was significantly altered by SA, IAA and GABA respectively. Both distinct cellular responses and overlapping signalling pathways were elicited by these three plant signals. Interestingly, these three plant compounds function additively to shut off the Agrobacterium virulence programme and activate the quorum‐quenching machinery. Moreover, the repression of the virulence programme by SA and IAA and the inactivation of quorum‐sensing signals by SA and GABA are regulated through independent pathways. Our data indicate that these plant signals, while cross‐talk in plant signalling networks, also act as cross‐kingdom signals and play redundant roles in tailoring Agrobacterium regulatory pathways, resulting in intensive signalling cross‐talk in Agrobacterium. Our results support the notion that Agrobacterium has evolved the ability to hijack plant signals for its own benefit. The complex signalling interplay between Agrobacterium and its plant hosts reflects an exquisite co‐evolutionary balance.


Journal of Bacteriology | 2006

Regulation and Properties of PstSCAB, a High-Affinity, High-Velocity Phosphate Transport System of Sinorhizobium meliloti

Ze-Chun Yuan; Rahat Zaheer; Turlough M. Finan

The properties and regulation of the pstSCAB-encoded Pi uptake system from the alfalfa symbiont Sinorhizobium meliloti are reported. We present evidence that the pstSCAB genes and the regulatory phoUB genes are transcribed from a single promoter that contains two PhoB binding sites and that transcription requires PhoB. S. meliloti strain 1021 (Rm1021) and its derivatives were found to carry a C deletion frameshift mutation in the pstC gene (designated pstC1021) that severely impairs activity of the PstSCAB Pi transport system. This mutation is absent in RCR2011, the parent of Rm1021. Correction of the pstC1021 mutation in Rm1021 by site-directed mutagenesis revealed that PstSCAB is a Pi-specific, high-affinity (Km, 0.2 microM), high-velocity (Vmax, 70 nmol/min/mg protein) transport system. The pstC1021 allele was shown to generate a partial pho regulon constitutive phenotype, in which transcription is activated by PhoB even under Pi-excess conditions that render PhoB inactive in a wild-type background. The previously reported symbiotic Fix- phenotype of phoCDET mutants was found to be dependent on the pstC1021 mutation, as Rm1021 phoCDET mutants formed small white nodules on alfalfa that failed to reduce N2, whereas phoCDET mutant strains with a corrected pstC allele (RmP110) formed pink nodules on alfalfa that fixed N2 like the wild type. Alfalfa root nodules formed by the wild-type RCR2011 strain expressed the low-affinity orfA-pit-encoded Pi uptake system and neither the pstSCAB genes nor the phoCDET genes. Thus, metabolism of alfalfa nodule bacteroids is not Pi limited.


Journal of Bacteriology | 2008

Transcriptome Profiling and Functional Analysis of Agrobacterium tumefaciens Reveals a General Conserved Response to Acidic Conditions (pH 5.5) and a Complex Acid-Mediated Signaling Involved in Agrobacterium-Plant Interactions

Ze-Chun Yuan; Pu Liu; Panatda Saenkham; Kathleen F. Kerr; Eugene W. Nester

Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer.


Microbial Cell Factories | 2016

Current knowledge and perspectives of Paenibacillus: a review

Elliot Nicholas Grady; Jacqueline MacDonald; Linda Liu; Alex Richman; Ze-Chun Yuan

Isolated from a wide range of sources, the genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment. Many Paenibacillus species can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition. They can also offer protection against insect herbivores and phytopathogens, including bacteria, fungi, nematodes, and viruses. This is accomplished by the production of a variety of antimicrobials and insecticides, and by triggering a hypersensitive defensive response of the plant, known as induced systemic resistance (ISR). Paenibacillus-derived antimicrobials also have applications in medicine, including polymyxins and fusaricidins, which are nonribosomal lipopeptides first isolated from strains of Paenibacillus polymyxa. Other useful molecules include exo-polysaccharides (EPS) and enzymes such as amylases, cellulases, hemicellulases, lipases, pectinases, oxygenases, dehydrogenases, lignin-modifying enzymes, and mutanases, which may have applications for detergents, food and feed, textiles, paper, biofuel, and healthcare. On the negative side, Paenibacillus larvae is the causative agent of American Foulbrood, a lethal disease of honeybees, while a variety of species are opportunistic infectors of humans, and others cause spoilage of pasteurized dairy products. This broad review summarizes the major positive and negative impacts of Paenibacillus: its realised and prospective contributions to agriculture, medicine, process manufacturing, and bioremediation, as well as its impacts due to pathogenicity and food spoilage. This review also includes detailed information in Additional files 1, 2, 3 for major known Paenibacillus species with their locations of isolation, genome sequencing projects, patents, and industrially significant compounds and enzymes. Paenibacillus will, over time, play increasingly important roles in sustainable agriculture and industrial biotechnology.


Frontiers in Plant Science | 2014

Agrobacterium tumefaciens responses to plant-derived signaling molecules

Sujatha Subramoni; Naeem Nathoo; Eugene Klimov; Ze-Chun Yuan

As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium–plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions.


Molecular Microbiology | 2005

Phosphate limitation induces catalase expression in Sinorhizobium meliloti , Pseudomonas aeruginosa and Agrobacterium tumefaciens

Ze-Chun Yuan; Rahat Zaheer; Turlough M. Finan

Growth of Sinorhizobium meliloti under Pi‐limiting conditions induced expression of the major H2O2‐inducible catalase (HPII) gene (katA) in this organism. This transcription required the PhoB transcriptional regulator and initiated from a promoter that was distinct from the OxyR‐dependent promoter which activates katA transcription in response to addition of H2O2. In N2‐fixing root nodules, katA was transcribed from the OxyR‐ and not the PhoB‐dependent promoter. This is consistent with the accumulation of reactive oxygen species (ROS) in nodules and also indicates that bacteroids within nodules are not Pi‐limited. Pi‐limited growth also induced expression of catalase genes in Agrobacterium tumefaciens (HPI) and Pseudomonas aeruginosa (PA4236‐HPI) suggesting that this may be a widespread phenomenon. The response is not a general stress response as in both S. meliloti and P. aeruginosa increased transcription is mediated by the phosphate responsive transcriptional activator PhoB. The phenotypic consequences of this response were demonstrated in S. meliloti by the dramatic increase in H2O2 resistance of wild type but not phoB mutant cells upon growth in Pi‐limiting media. Our data indicate that in S. meliloti, katA and other genes whose products are involved in protection from oxidative stress are induced upon Pi‐limitation. These observations suggest that as part of the response to Pi‐limitation, S. meliloti, P. aeruginosa and A. tumefaciens have evolved a capacity to increase their resistance to oxidative stress. Whether this capacity evolved because Pi‐starved cells generate more ROS or whether the physiological changes that occur in the cells in response to Pi‐starvation render them more sensitive to ROS remains to be established.


BMC Genomics | 2014

Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness

Alexander W. Eastman; David E. Heinrichs; Ze-Chun Yuan

BackgroundMembers of the genus Paenibacillus are important plant growth-promoting rhizobacteria that can serve as bio-reactors. Paenibacillus polymyxa promotes the growth of a variety of economically important crops. Our lab recently completed the genome sequence of Paenibacillus polymyxa CR1. As of January 2014, four P. polymyxa genomes have been completely sequenced but no comparative genomic analyses have been reported.ResultsHere we report the comparative and genetic analyses of four sequenced P. polymyxa genomes, which revealed a significantly conserved core genome. Complex metabolic pathways and regulatory networks were highly conserved and allow P. polymyxa to rapidly respond to dynamic environmental cues. Genes responsible for phytohormone synthesis, phosphate solubilization, iron acquisition, transcriptional regulation, σ-factors, stress responses, transporters and biomass degradation were well conserved, indicating an intimate association with plant hosts and the rhizosphere niche. In addition, genes responsible for antimicrobial resistance and non-ribosomal peptide/polyketide synthesis are present in both the core and accessory genome of each strain. Comparative analyses also reveal variations in the accessory genome, including large plasmids present in strains M1 and SC2. Furthermore, a considerable number of strain-specific genes and genomic islands are irregularly distributed throughout each genome. Although a variety of plant-growth promoting traits are encoded by all strains, only P. polymyxa CR1 encodes the unique nitrogen fixation cluster found in other Paenibacillus sp.ConclusionsOur study revealed that genomic loci relevant to host interaction and ecological fitness are highly conserved within the P. polymyxa genomes analysed, despite variations in the accessory genome. This work suggets that plant-growth promotion by P. polymyxa is mediated largely through phytohormone production, increased nutrient availability and bio-control mechanisms. This study provides an in-depth understanding of the genome architecture of this species, thus facilitating future genetic engineering and applications in agriculture, industry and medicine. Furthermore, this study highlights the current gap in our understanding of complex plant biomass metabolism in Gram-positive bacteria.


Genome Announcements | 2014

Complete Genome Sequence of Paenibacillus polymyxa CR1, a Plant Growth-Promoting Bacterium Isolated from the Corn Rhizosphere Exhibiting Potential for Biocontrol, Biomass Degradation, and Biofuel Production

Alexander W. Eastman; Brian Weselowski; Naeem Nathoo; Ze-Chun Yuan

ABSTRACT Here we report the complete genome sequence of the bacterium Paenibacillus polymyxa CR1 (accession no. CP006941), which consists of one circular chromosome of 6,024,666 bp with 5,283 coding sequences (CDS), 87 tRNAs, and 12 rRNA operons. Data presented will allow for further insights into the mechanisms underpinning agriculturally and industrially relevant processes.

Collaboration


Dive into the Ze-Chun Yuan's collaboration.

Top Co-Authors

Avatar

Brian Weselowski

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Alexander W. Eastman

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest K. Yanful

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Ikrema Hassan

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Jacqueline MacDonald

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Naeem Nathoo

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge