Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ze-Hong Yan is active.

Publication


Featured researches published by Ze-Hong Yan.


Theoretical and Applied Genetics | 2005

Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers

H. Long; Yu-Ming Wei; Ze-Hong Yan; Bernard R. Baum; Eviatar Nevo; You-Liang Zheng

On the basis of sequence analysis, 69 known low-molecular-weight glutenin subunit (LMW-GS) genes were experimentally classified into nine groups by the deduced amino acid sequence of the highly conserved N-terminal domain. To clarify the chromosomal locations of these groups, 11 specific primer sets were designed to carry out polymerase chain reactions (PCR) with the genomic DNA of group 1 ditelosomic lines of Chinese Spring, among which nine primer sets proved to be LMW-GS group-specific. Each group of LMW-GS genes was specifically assigned on a single chromosome arm and hence to a specific locus. Therefore, these results provided the possibility to predict the chromosome location of a new LMW-GS gene based on its deduced N-terminal sequence. The validity of the classification was confirmed by the amplifications in 27 diploid wheat and Aegilops accessions. The length polymorphisms of LMW-GS genes of groups 1 and 2, and groups 3 and 4.1 were detected in diploid A-genome and S-genome accessions, respectively. The diploid wheat and Aegilops species could be used as valuable resources of novel allele variations of LMW-GS gene in the improvement of wheat quality. The nine LMW-GS group-specific primer sets could be utilized to select specific allele variations of LMW-GS genes in the marker-assisted breeding.


Science China-life Sciences | 2004

Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat

Lianquan Zhang; Dengcai Liu; Ze-Hong Yan; Xiu-Jin Lan; You-Liang Zheng; Yong-Hong Zhou

It was suggested that the rapid changes of DNA sequence and gene expression occurred at the early stages of allopolyploid formation. In this study, we revealed the microsatellite (SSR) differences between newly formed allopolyploids and their donor parents by using 21 primer sets specific for D genome of wheat. It was indicated that rapid changes had occurred in the “shock” process of the allopolyploid formation between tetraploid wheat and Aegilops tauschii. The changes of SSR flanking sequence resulted in appearance of novel bands or disappearance of parental bands. The disappearance of the parental bands showed much higher frequencies in comparison with that of appearance of novel bands. Disappearance of the parental bands was not random. The frequency of disappearance in tetraploid wheat was much higher than in Ae. tauschii, i. e. the disappearance frequency in AABB genome was much higher than in D genome. Changes of SSR flanking sequence occurred at the early stage of F1 hybrid or just after chromosome doubling. From the above results, it can be inferred that SSR flanking sequence region was very active and was amenable to change in the process of polyploidization. This suggested that SSR flanking sequence probably had special biological function at the early stage of ployploidization. The rapid and directional changes at the early stage of polyploidization might contribute to the rapid evolution of the newly formed allopolyploid and allow the divergent genomes to act in harmony.


Molecular Biology | 2006

Biochemical and molecular characterization of gliadins

Peng-Fei Qi; Yu-Ming Wei; Yuan-Wen Yue; Ze-Hong Yan; Y. L. Zheng

Gliadins account for about 40–50% of the total proteins in wheat seeds and play an important role in the nutritional and processing quality of flour. Usually, gliadins can be divided into α-(α/β), γ-, and ω-groups, whereas the low-molecular-weight (LMW) gliadins are novel seed storage proteins. The low-molecular-weight glutenin subunits (LMW-GSs) are also designated as gliadins in a few publications. The genes encoding gliadins are mainly located on the short arms of group 6 and group 1 chromosomes, and not evenly distributed. Repetitive sequences cover most of the uncoding regions, which attributed greatly to the evolution of wheat genome. The primary structure of each gliadin is divided into several domains, and the long repetitive domains consist of peptide motifs. Conserved cysteine residues mainly form intramolecular disulfide bonds. The rare potential intermolecular disulfide bonds and the long repetitive domains play an important role in the quality of wheat flour. There is a general idea that gliadin genes, even prolamin genes, have a common origin and subsequent divergence leads to gene polymorphism. The γ-gliadins are considered to be the most ancient of the wheat prolamin family. Several elements in the 5′-flanking (e.g., CAAT and TATA box) and the 3′-flanking sequences have been detected, which has been shown to be necessary for the proper expression of gliadins.


Genetica | 2006

Characterization of two HMW glutenin subunit genes from Taenitherum Nevski

Ze-Hong Yan; Yu-Ming Wei; Ji-Rui Wang; Dengcai Liu; Shou-Fen Dai; You-Liang Zheng

The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.


Genetic Resources and Crop Evolution | 2012

Allelic variation and distribution of HMW glutenin subunit 1Ay in Triticum species

Xi-Gui Hu; Bi-Hua Wu; Zhe-Guang Bi; Dengcai Liu; Lianquan Zhang; Ze-Hong Yan; Yu-Ming Wei; You-Liang Zheng

The allelic variation and distribution of high-molecular-weight (HMW) glutenin subunit 1Ay in 814 Triticum lines were investigated by sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS–PAGE). 1Ay subunit existed in 13 out of analyzed 21 species. The four species T. turgidum L., T. polonicum L., T. turanicum Jakubz. and T. zhukovskyi Men. et Er. were firstly discovered with expressed 1Ay subunit. The distribution frequencies for diploid, tetraploid and hexaploid wheats were at 87.89, 20.31 and 1.79%, respectively. Among the observed eight 1Ay alleles, three with the electrophoretic mobilities similar to 1Bx6, 1By8, and between 1By8 and 1Dy10 were firstly observed. Five had the mobilities similar to 1Bx6, 1Bx7, 1By8, 1Dy10, and 1Dy12 in Glu-1B and Glu-1D loci of hexaploid wheat. It is very difficult to distinguish these 1Ay alleles in Glu-1Ay from those in hexaploid wheat. The predominant 1Ay alleles were those with the mobilities similar to 1Bx7, 1By8, 1Dy10 and 1Dy12, and faster than 1Dy12. Comparison results of 1Ay alleles in different species indicated that multiple diploid lines were involved in the evolution process of tetraploid wheat. The 1Ay allelic variations and genetic resources might be useful in the quality improvement of common wheat.


International Journal of Molecular Sciences | 2012

Microsatellite Mutation Rate during Allohexaploidization of Newly Resynthesized Wheat

Jiangtao Luo; Ming Hao; Li Zhang; Jixiang Chen; Lianquan Zhang; Zhongwei Yuan; Ze-Hong Yan; You-Liang Zheng; Huaigang Zhang; Yang Yen; Dengcai Liu

Simple sequence repeats (SSRs, also known as microsatellites) are known to be mutational hotspots in genomes. DNA rearrangements have also been reported to accompany allopolyploidization. A study of the effect of allopolyploidization on SSR mutation is therefore important for understanding the origin and evolutionary dynamics of SSRs in allopolyploids. Three synthesized double haploid (SynDH) populations were made from 241 interspecific F1 haploid hybrids between Triticum turgidum L. and Aegilops tauschii (Coss.) through spontaneous chromosome doubling via unreduced gametes. Mutation events were studied at 160 SSR loci in the S1 generation (the first generation after chromosome doubling) of the three SynDH populations. Of the 148260 SSR alleles investigated in S1 generation, only one mutation (changed number of repeats) was confirmed with a mutation rate of 6.74 × 10−6. This mutation most likely occurred in the respective F1 hybrid. In comparison with previously reported data, our results suggested that allohexaploidization of wheat did not increase SSR mutation rate.


BMC Genetics | 2012

Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

Li Zhang; Jiangtao Luo; Ming Hao; Lianquan Zhang; Zhongwei Yuan; Ze-Hong Yan; Yaxi Liu; Bo Zhang; Baolong Liu; Chunji Liu; Huaigang Zhang; You-Liang Zheng; Dengcai Liu

BackgroundA synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population.ResultsOf the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B.ConclusionsA genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.


Journal of Genetics and Genomics | 2011

Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process

Lianquan Zhang; Li Zhang; Jiangtao Luo; Wenjie Chen; Ming Hao; Baolong Liu; Ze-Hong Yan; Bo Zhang; Huaigang Zhang; You-Liang Zheng; Dengcai Liu; Yang Yen

Doubled haploid (DH) populations are useful to scientists and breeders in both crop improvement and basic research. Current methods of producing DHs usually need in vitro culture for extracting haploids and chemical treatment for chromosome doubling. This report describes a simple method for synthesizing DHs (SynDH) especially for allopolyploid species by utilizing meiotic restitution genes. The method involves three steps: hybridization to induce recombination, interspecific hybridization to extract haploids, and spontaneous chromosome doubling by selfing the interspecific F(1)s. DHs produced in this way contain recombinant chromosomes in the genome(s) of interest in a homogeneous background. No special equipment or treatments are involved in the DH production and it can be easily applied in any breeding and/or genetic program. Triticum turgidum L. and Aegilops tauschii Coss, the two ancestral species of common wheat (Triticum aestivum L.) and molecular markers were used to demonstrate the SynDH method.


PLOS ONE | 2011

Mitotic Illegitimate Recombination Is a Mechanism for Novel Changes in High-Molecular-Weight Glutenin Subunits in Wheat-Rye Hybrids

Zhongwei Yuan; Dengcai Liu; Lianquan Zhang; Li Zhang; Wenjie Chen; Ze-Hong Yan; You-Liang Zheng; Huaigang Zhang; Yang Yen

Wide hybrids can have novel traits or changed expression of a quantitative trait that their parents do not have. These phenomena have long been noticed, yet the mechanisms are poorly understood. High-molecular-weight glutenin subunits (HMW-GS) are seed storage proteins encoded by Glu-1 genes that only express in endosperm in wheat and its related species. Novel HMW-GS compositions have been observed in their hybrids. This research elucidated the molecular mechanisms by investigating the causative factors of novel HMW-GS changes in wheat-rye hybrids. HMW-GS compositions in the endosperm and their coding sequences in the leaves of F1 and F2 hybrids between wheat landrace Shinchunaga and rye landrace Qinling were investigated. Missing and/or additional novel HMW-GSs were observed in the endosperm of 0.5% of the 2078 F1 and 22% of 36 F2 hybrid seeds. The wildtype Glu-1Ax null allele was found to have 42 types of short repeat sequences of 3-60 bp long that appeared 2 to 100 times. It also has an in-frame stop codon in the central repetitive region. Analyzing cloned allele sequences of HMW-GS coding gene Glu-1 revealed that deletions involving the in-frame stop codon had happened, resulting in novel ∼1.8-kb Glu-1Ax alleles in some F1 and F2 plants. The cloned mutant Glu-1Ax alleles were expressed in Escherichia coli, and the HMW-GSs produced matched the novel HMW-GSs found in the hybrids. The differential changes between the endosperm and the plant of the same hybrids and the data of E. coli expression of the cloned deletion alleles both suggested that mitotic illegitimate recombination between two copies of a short repeat sequence had resulted in the deletions and thus the changed HMW-GS compositions. Our experiments have provided the first direct evidence to show that mitotic illegitimate recombination is a mechanism that produces novel phenotypes in wide hybrids.


Journal of Integrative Plant Biology | 2009

Molecular Characterization of Two Silenced y‐type Genes for Glu‐B1 in Triticum aestivum ssp. yunnanese and ssp. tibetanum

Zhongwei Yuan; Qi-Jiao Chen; Lianquan Zhang; Ze-Hong Yan; You-Liang Zheng; Dengcai Liu

The high molecular weight glutenin subunits (HMW-GSs) are a major class of common wheat storage proteins. The bread-making quality of common wheat flour is influenced by the composition of HMW-GSs. In the present study, two unexpressed 1By genes from Triticum aesitvum L.ssp.yunnanese AS332 and T. aesitvum ssp.tibetanum AS908 were respectively cloned and characterized. The results indicated that both of the silenced 1By genes in AS332 and AS908 were 1By9. In contrast to previously reported mechanisms for silenced genes 1Ax and 1Ay, which was due to the insertion of transposon elements or the presence of premature stop codon via base substitution of C-->T transition in trinucleotides CAA or CAG, the silence of 1By9 genes was caused by premature stop codons via the deletion of base A in trinucleotide CAA, which lead to frameshift mutation and indirectly produced several premature stop codons (TAG) downstream of the coding sequence.

Collaboration


Dive into the Ze-Hong Yan's collaboration.

Top Co-Authors

Avatar

You-Liang Zheng

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Yu-Ming Wei

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dengcai Liu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lianquan Zhang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shou-Fen Dai

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ji-Rui Wang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhongwei Yuan

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiu-Jin Lan

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Y. L. Zheng

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huaigang Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge