Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ze-Long Nie is active.

Publication


Featured researches published by Ze-Long Nie.


Frontiers in Genetics | 2014

Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau.

Jun Wen; Jian-Qiang Zhang; Ze-Long Nie; Yang Zhong; Hang Sun

The Qinghai-Tibetan Plateau (QTP) is the highest and one of the most extensive plateaus in the world. Phylogenetic, phylogeographic, and ecological studies support plant diversifications on the QTP through multiple mechanisms such as allopatric speciation via geographic isolation, climatic oscillations and divergences, pollinator-mediated isolation, diploid hybridization and introgression, and allopolyploidy. These mechanisms have driven spectacular radiations and/or species diversifications in various groups of plants such as Pedicularis L., Saussurea DC., Rhododendron L., Primula L., Meconopsis Vig., Rhodiola L., and many lineages of gymnosperms. Nevertheless, much work is needed toward understanding the evolutionary mechanisms of plant diversifications on the QTP. Well-sampled biogeographic analyses of the QTP plants in the broad framework of the Northern Hemisphere as well as the Southern Hemisphere are still relatively few and should be encouraged in the next decade. This paper reviews recent evidence from phylogenetic and biogeographic studies in plants, in the context of rapid radiations, mechanisms of species diversifications on the QTP, and the biogeographic significance of the QTP in the broader context of both the Northern and Southern Hemisphere biogeography. Integrative multidimensional analyses of phylogeny, morphological innovations, geography, ecology, development, species interactions and diversifications, and geology are needed and should shed insights into the patterns of evolutionary assembly and radiations in this fascinating region.


Molecular Phylogenetics and Evolution | 2008

Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets.

Ze-Long Nie; Jun Wen; Hiroshi Azuma; Yin-Long Qiu; Hang Sun; Ying Meng; Weibang Sun; Elizabeth A. Zimmer

This study employs three nuclear genes (PHYA, LFY, and GAI1) to reconstruct the phylogenetic and biogeographic history of Magnoliaceae. A total of 104 samples representing 86 taxa from all sections and most subsections were sequenced. Twelve major groups are well supported to be monophyletic within Magnoliaceae and these groups are largely consistent with the recent taxonomic revision at the sectional and subsectional levels. However, relationships at deeper nodes of the subfamily Magnolioideae remain not well resolved. A relaxed clock relying on uncorrelated rates suggests that the complicated divergent evolution of Magnolioideae began around the early Eocene (54.57mya), concordant with paleoclimatic and fossil evidence. Intercontinental disjunctions of Magnoliaceae in the Northern Hemisphere appear to have originated during at least two geologic periods. Some occurred after the middle Miocene, represented by two well-recognized temperate lineages disjunct between eastern Asia and eastern North America. The others may have occurred no later than the Oligocene, with ancient separations between or within tropical and temperate lineages.


PLOS ONE | 2013

Transcriptome Sequences Resolve Deep Relationships of the Grape Family

Jun Wen; Zhiqiang Xiong; Ze-Long Nie; Likai Mao; Yabing Zhu; Xianzhao Kan; Stefanie M. Ickert-Bond; Jean M. Gerrath; Elizabeth A. Zimmer; Xiaodong Fang

Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.


American Journal of Botany | 2006

Evolution of biogeographic disjunction between eastern Asia and eastern North America in Phryma (Phrymaceae).

Ze-Long Nie; Hang Sun; Paul M. Beardsley; Richard G. Olmstead; Jun Wen

This study examines molecular and morphological differentiation in Phryma L., which has only one species with a well-known classic intercontinental disjunct distribution between eastern Asia (EA) and eastern North America (ENA). Phylogenetic analysis of nuclear ribosomal ITS and chloroplast rps16 and trnL-F sequences revealed two highly distinct clades corresponding to EA and ENA. The divergence time between the intercontinental populations was estimated to be 3.68 ± 2.25 to 5.23 ± 1.37 million years ago (mya) based on combined chloroplast data using Bayesian and penalized likelihood methods. Phylogeographic and dispersal-vicariance (DIVA) analysis suggest a North American origin of Phryma and its migration into EA via the Bering land bridge. Multivariate analysis based on 23 quantitative morphological characters detected no geographic groups at the intercontinental level. The intercontinental populations of Phryma thus show distinct molecular divergence with little morphological differentiation. The discordance of the molecular and morphological patterns may be explained by morphological stasis due to ecological similarity in both continents. The divergence of Phryma from its close relatives in the Phrymaceae was estimated to be at least 32.32 ± 4.46 to 49.35 ± 3.18 mya.


American Journal of Botany | 2005

Monophyly of Kelloggia Torrey ex Benth. (Rubiaceae) and evolution of its intercontinental disjunction between western North America and eastern Asia

Ze-Long Nie; Jun Wen; Hang Sun; Bruce Bartholomew

Kelloggia Torrey ex Bentham (Rubiaceae) consists of two species disjunctly distributed in western North America (K. galioides Torrey) and the western part of eastern Asia (K. chinensis Franch.). The two species exhibit a high level of morphological divergence. To test its monophyly and to infer its biogeographic history, we estimated the phylogeny of Kelloggia and its relatives from sequences of three chloroplast DNA regions (rbcL gene, atpB-rbcL spacer, and rps16 intron). The monophyly of Kelloggia was strongly supported, and it forms a sister relationship with the tribe Rubieae. The divergence time between the two disjunct species of Kelloggia was estimated to be 5.42 ± 2.32 million years ago (mya) using the penalized likelihood method based on rbcL sequence data with fossil calibration. Our result does not support the Madrean-Tethyan hypothesis, which assumes an earlier divergence time of 20-25 mya. Ancestral area analysis, as well as dispersal-vicariance (DIVA) analysis, suggests the Asian origin of Kelloggia and the importance of Eurasia in the diversification of its close relatives in the Rubieae-Theligoneae-Paederieae group. The intercontinental disjunction in Kelloggia is suggested to have evolved via long-distance dispersal from Asia into western North America.


American Journal of Botany | 2010

Molecular phylogeny and biogeographic diversification of Parthenocissus (Vitaceae) disjunct between Asia and North America.

Ze-Long Nie; Hang Sun; Zhi-Duan Chen; Ying Meng; Steven R. Manchester; Jun Wen

UNLABELLED PREMISE OF THE STUDY Parthenocissus is a genus of the grape family Vitaceae and has a disjunct distribution in Asia and North America with members in both tropical and temperate regions. The monophyly of Parthenocissus has not yet been tested, and the species relationships and the evolution of its intercontinental disjunction have not been investigated with extensive sampling and molecular phylogenetic methods. • METHODS Plastid (trnL-F, rps16, and atpB-rbcL) and nuclear GAI1 sequences of 56 accessions representing all 12 Parthenocissus species were analyzed with parsimony, likelihood, and Bayesian inference. Divergence times of disjunct lineages were estimated with relaxed Bayesian dating. Evolution of the leaflet number was assessed by tracing this character onto Bayesian trees using the Trace Character Over Trees option in the program Mesquite. • KEY RESULTS Parthenocissus is monophyletic and sister to the newly described segregate genus Yua. Two major clades within Parthenocissus are recognizable corresponding to their distribution in Asia and North America. The disjunction between the two continents is estimated to be at 21.64 (95% higher posterior densities 10.23-34.89) million years ago. • CONCLUSIONS Parthenocissus is likely to have derived from the Eocene boreotropical element. Its current Asian-North American disjunction is dated to the early Miocene, congruent with fossil and paleoclimatic evidence. The tropical species is nested within the temperate clade and is inferred to have dispersed from the adjacent temperate regions. Parthenocissus and Yua are best treated as distinct genera. Leaflet number in this genus has a complex history and cannot be used as a character for infrageneric classification.


Journal of Systematics and Evolution | 2016

Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene

Jun Wen; Ze-Long Nie; Stefanie M. Ickert-Bond

This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.


Taxon | 2013

Biogeography: Where do we go from here?

Jun Wen; Richard H. Ree; Stefanie M. Ickert-Bond; Ze-Long Nie; Vicki A. Funk

Biogeography is a multidisciplinary science concerned with how and why organisms are distributed as they are on Earth. It links fields such as systematics, ecology, paleontology, and climatology, and occupies a central position in evolutionary biology, being fundamental to the study of processes such as speciation and adaptive radiation. Here we provide a brief overview of some particularly dynamic areas of inquiry and offer some perspectives on future directions for the field. We hope that some historical debates, such as those over the importance of dispersal, or the validity of molecular dating, are finally being put to rest. Over the last decade, biogeography has become increasingly integrative, and has benefited from advances in statistical methods for inferring geographic range dynamics in a phylogenetic context, molecular estimation of lineage divergence times, and modeling lineage birth and death. These are enabling greater insights into patterns of organismal diversification in time and space. In the next decade, analytical challenges are emerging on several fronts. For example, phylogenies are increasing in size and taxonomic breadth and new sequencing technologies enabling phylogenetic and phylogeographic datasets are increasingly genomic in depth. In addition, geographic occurrence data are accumulating in online repositories, yet tools for data mining and synthetic analysis are lacking for comparative multi-lineage studies. Biogeography is thus entering an era characterized by phylogenomic datasets, increasingly comprehensive sampling of clades, and interdisciplinary synthesis. We anticipate continued progress in our understanding of biodiversity patterns at regional and global scales, but this will likely require greater collaboration with specialists in bioinformatics and computational science. Finally, it is clear that biogeography has an increasingly important role to play in the discovery and conservation of biodiversity. Lessons learned from biogeographic studies of islands are being applied to better understand extinction dynamics as continental ecosystems become more fragmented, and phylogeography and ecological niche modeling offer innovative paths toward the discovery of previously unknown species distributions and priority areas for conservation. The future of biogeography is bright and filled with exciting challenges and opportunities.


Molecular Phylogenetics and Evolution | 2013

Phylogenetic and biogeographic analyses of the Sino-Himalayan endemic genus Cyananthus (Campanulaceae) and implications for the evolution of its sexual system

Zhuo Zhou; Deyuan Hong; Yang Niu; Guodong Li; Ze-Long Nie; Jun Wen; Hang Sun

Cyananthus (Campanulaceae) is a small genus consisting of ca. 20 species endemic to the Sino-Himalayan region. Based on phylogenetic analysis using nuclear ribosomal ITS and four plastid markers (matK, rbcL, psbA-trnH and trnG-S), our results strongly support the monophyly of Cyananthus and its close relationship with the Codonopsis clade of the platycodonoids. Three major clades are supported, corresponding to the three sections of the genus, with sect. Cyananthus, which mainly occurs in the Himalayas, being a sister to the clade comprising the other two sections (sect. Stenolobi and sect. Annui) distributed primarily in the Hengduan Mountain region. We also observed that Cyananthus exhibits variation in its sexual system, possessing both hermaphroditic and gynodioecious species. Character evolution analyses using Mesquite suggest that gynodioecy evolved from hermaphroditism only once in sect. Stenolobi, but that there is a reversal in C. formosus. Molecular dating and biogeographic analysis with LAGRANGE support dispersal from the Himalayas to the Hengduan Mountains during the early evolution of Cyananthus. The extensive uplift of the Qinghai-Tibetan Plateau and the Hengduan Mountains played an important role in the subsequent diversification of the genus.


Molecular Phylogenetics and Evolution | 2016

Phylogeny of the Ampelocissus-Vitis clade in Vitaceae supports the New World origin of the grape genus.

Xiu-Qun Liu; Stefanie M. Ickert-Bond; Ze-Long Nie; Zhuo Zhou; Long-Qing Chen; Jun Wen

The grapes and the close allies in Vitaceae are of great agronomic and economic importance. Our previous studies showed that the grape genus Vitis was closely related to three tropical genera, which formed the Ampelocissus-Vitis clade (including Vitis, Ampelocissus, Nothocissus and Pterisanthes). Yet the phylogenetic relationships of the four genera within this clade remain poorly resolved. Furthermore, the geographic origin of Vitis is still controversial, because the sampling of the close relatives of Vitis was too limited in the previous studies. This study reconstructs the phylogenetic relationships within the clade, and hypothesizes the origin of Vitis in a broader phylogenetic framework, using five plastid and two nuclear markers. The Ampelocissus-Vitis clade is supported to be composed of five main lineages. Vitis includes two described subgenera each as a monophyletic group. Ampelocissus is paraphyletic. The New World Ampelocissus does not form a clade and shows a complex phylogenetic relationship, with A. acapulcensis and A. javalensis forming a clade, and A. erdvendbergiana sister to Vitis. The majority of the Asian Ampelocissus species form a clade, within which Pterisanthes is nested. Pterisanthes is polyphyletic, suggesting that the lamellate inflorescence characteristic of the genus represents convergence. Nothocissus is sister to the clade of Asian Ampelocissus and Pterisanthes. The African Ampelocissus forms a clade with several Asian species. Based on the Bayesian dating and both the RASP and Lagrange analyses, Vitis is inferred to have originated in the New World during the late Eocene (39.4Ma, 95% HPD: 32.6-48.6Ma), then migrated to Eurasia in the late Eocene (37.3Ma, 95% HPD: 30.9-45.1Ma). The North Atlantic land bridges (NALB) are hypothesized to be the most plausible route for the Vitis migration from the New World to Eurasia, while intercontinental long distance dispersal (LDD) cannot be eliminated as a likely mechanism.

Collaboration


Dive into the Ze-Long Nie's collaboration.

Top Co-Authors

Avatar

Hang Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Wen

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Wen Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongping Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhuo Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefanie M. Ickert-Bond

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Changkyun Kim

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge