Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ze Zheng is active.

Publication


Featured researches published by Ze Zheng.


Hepatology | 2012

Endoplasmic reticulum‐tethered transcription factor cAMP responsive element‐binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice

Chunbin Zhang; Guohui Wang; Ze Zheng; Krishna Rao Maddipati; Xuebao Zhang; Gregory Dyson; Paul Williams; Stephen A. Duncan; Randal J. Kaufman; Kezhong Zhang

cAMP responsive element‐binding protein, hepatocyte specific (CREBH), is a liver‐specific transcription factor localized in the endoplasmic reticulum (ER) membrane. Our previous work demonstrated that CREBH is activated by ER stress or inflammatory stimuli to induce an acute‐phase hepatic inflammation. Here, we demonstrate that CREBH is a key metabolic regulator of hepatic lipogenesis, fatty acid (FA) oxidation, and lipolysis under metabolic stress. Saturated FA, insulin signals, or an atherogenic high‐fat diet can induce CREBH activation in the liver. Under the normal chow diet, CrebH knockout mice display a modest decrease in hepatic lipid contents, but an increase in plasma triglycerides (TGs). After having been fed an atherogenic high‐fat (AHF) diet, massive accumulation of hepatic lipid metabolites and significant increase in plasma TG levels were observed in the CrebH knockout mice. Along with the hypertriglyceridemia phenotype, the CrebH null mice displayed significantly reduced body‐weight gain, diminished abdominal fat, and increased nonalcoholic steatohepatitis activities under the AHF diet. Gene‐expression analysis and chromatin‐immunoprecipitation assay indicated that CREBH is required to activate the expression of the genes encoding functions involved in de novo lipogenesis, TG and cholesterol biosynthesis, FA elongation and oxidation, lipolysis, and lipid transport. Supporting the role of CREBH in lipogenesis and lipolysis, forced expression of an activated form of CREBH protein in the liver significantly increases accumulation of hepatic lipids, but reduces plasma TG levels in mice. Conclusion: All together, our study shows that CREBH plays a key role in maintaining lipid homeostasis by regulating the expression of the genes involved in hepatic lipogenesis, FA oxidation, and lipolysis under metabolic stress. The identification of CREBH as a stress‐inducible metabolic regulator has important implications in the understanding and treatment of metabolic disease. (Hepatology 2012)


American Journal of Physiology-cell Physiology | 2010

Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues

Suzette Laing; Guohui Wang; Tamara Briazova; Chunbin Zhang; Aixia Wang; Ze Zheng; Alexander Gow; Alex F. Chen; Sanjay Rajagopalan; Lung Chi Chen; Qinghua Sun; Kezhong Zhang

Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter < 2.5 μm, PM(2.5)) induces endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) in the lung and liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM(2.5) exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM(2.5)-induced apoptosis. Furthermore, PM(2.5) exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM(2.5) exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM(2.5) exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis.


The EMBO Journal | 2013

Toll‐like receptor‐mediated IRE1α activation as a therapeutic target for inflammatory arthritis

Quan Qiu; Ze Zheng; Lin Chang; Yuan Si Zhao; Can Tan; Aditya Dandekar; Zheng Zhang; Zhenghong Lin; Ming Gui; Xiu Li; Tongshuai Zhang; Qingfei Kong; Hulun Li; Sha Chen; An Chen; Randal J. Kaufman; Wei Lei Yang; Hui Kuan Lin; Donna D. Zhang; Harris Perlman; Edward B. Thorp; Kezhong Zhang; Deyu Fang

In rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll‐like receptor (TLR)‐mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol‐requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer. Myeloid‐specific deletion of the IRE1α gene protected mice from inflammatory arthritis, and treatment with the IRE1α‐specific inhibitor 4U8C attenuated joint inflammation in mice. IRE1α was required for optimal production of pro‐inflammatory cytokines as evidenced by impaired TLR‐induced cytokine production in IRE1α‐null macrophages and neutrophils. Further analyses demonstrated that tumour necrosis factor (TNF) receptor‐associated factor 6 (TRAF6) plays a key role in TLR‐mediated IRE1α activation by catalysing IRE1α ubiquitination and blocking the recruitment of protein phosphatase 2A (PP2A), a phosphatase that inhibits IRE1α phosphorylation. In summary, we discovered a novel regulatory axis through TRAF6‐mediated IRE1α ubiquitination in regulating TLR‐induced IRE1α activation in pro‐inflammatory cytokine production, and demonstrated that IRE1α is a potential therapeutic target for inflammatory arthritis.


Endocrinology | 2014

Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor α to regulate metabolic hormone FGF21.

Hyunbae Kim; Roberto Mendez; Ze Zheng; Lin Chang; Juan Cai; Ren Zhang; Kezhong Zhang

Lipid metabolism is tightly regulated by nuclear receptors, transcription factors, and cellular enzymes. In this study, we demonstrated that the liver-enriched transcription factor CREBH (cAMP-responsive element binding protein, hepatocyte specific) and peroxisome proliferator-activated receptor α (PPARα) function as binary transcriptional activators to regulate lipid metabolism by activating fibroblast growth factor 21 (FGF21), a hepatic hormone that regulates whole-body energy homeostasis. Gain- and loss-of-function studies indicated that CREBH regulates triglyceride and fatty acid metabolism in animals under fasting or on an atherogenic high-fat (AHF) diet. CREBH and PPARα act as interactive trans-activators that regulate each other for their expression. Activated CREBH protein interacts with PPARα to form a functional complex upon fasting or the AHF diet, and both factors are required for induction of the metabolic hormone FGF21. The CREBH-PPARα complex was found to bind to integrated CRE-PPAR-responsive element-binding motifs in the FGF21 gene promoter. Whereas CREBH and PPARα function in synergy to activate FGF21 gene expression, PPARα relies on CREBH to exert its trans-activation effect on FGF21. Supporting the key role of CREBH in regulating FGF21, infusion of recombinant FGF21 protein can reverse hypertriglyceridemia and hypoketonemia and partially rescue nonalcoholic steatohepatitis developed in the CREBH-null mice after the AHF diet. Our study demonstrated a transcriptional regulatory axis of CREBH-PPARα-FGF21 in maintaining lipid homeostasis under metabolic stress. The functional relationship between CREBH and PPARα in regulating FGF21 may represent an important transcriptional coactivation mechanism that orchestrates the processes of energy supply upon metabolic alteration.


World Journal of Hepatology | 2010

Role of unfolded protein response in lipogenesis.

Ze Zheng; Chunbin Zhang; Kezhong Zhang

The signal transduction network in regulating lipid metabolism is a hot topic of biomedical research. Recent research endeavors reveal that intracellular stress signaling from a cellular organelle called endoplasmic reticulum (ER) is critically involved in lipid homeostasis and the development of metabolic disease. The ER is a site where newly-synthesized proteins are folded and assembled into their three-dimensional structures, modified and transported to their precise cellular destinations. A wide range of biochemical, physiological and pathological stimuli can interrupt the protein folding process in the ER and cause accumulation of unfolded or misfolded proteins in the ER lumen, a condition referred to as ER stress. To cope with this stress condition, the ER has evolved highly-specific signaling pathways collectively termed Unfolded Protein Response (UPR) or ER stress response. The UPR regulates transcriptional and translational programs, affecting broad aspects of cellular metabolism and cell fate. Lipogenesis, the metabolic process of de novo lipid biosynthesis, occurs primarily in the liver where metabolic signals regulate expression of key enzymes in glycolytic and lipogenic pathways. Recent studies suggest that the UPR plays crucial roles in modulating lipogenesis under metabolic conditions. Here we address some of recent representative evidence regarding the role of the UPR in lipogenesis.


Journal of Hepatology | 2015

Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models

Ze Zheng; Xuebao Zhang; Jiemei Wang; Aditya Dandekar; Hyunbae Kim; Xiaohua Xu; Yuqi Cui; Aixia Wang; Lung Chi Chen; Sanjay Rajagopalan; Qinghua Sun; Kezhong Zhang

BACKGROUND & AIMS Hepatic fibrosis, featured by the accumulation of excessive extracellular matrix in liver tissue, is associated with metabolic disease and cancer. Inhalation exposure to airborne particulate matter in fine ranges (PM2.5) correlates with pulmonary dysfunction, cardiovascular disease, and metabolic syndrome. In this study, we investigated the effect and mechanism of PM2.5 exposure on hepatic fibrogenesis. METHODS Both inhalation exposure of mice and in vitro exposure of specialized cells to PM2.5 were performed to elucidate the effect of PM2.5 exposure on hepatic fibrosis. Histological examinations, gene expression analyses, and genetic animal models were utilized to determine the effect and mechanism by which PM2.5 exposure promotes hepatic fibrosis. RESULTS Inhalation exposure to concentrated ambient PM2.5 induces hepatic fibrosis in mice under the normal chow or high-fat diet. Mice after PM2.5 exposure displayed increased expression of collagens in liver tissues. Exposure to PM2.5 led to activation of the transforming growth factor β-SMAD3 signaling, suppression of peroxisome proliferator-activated receptor γ, and expression of collagens in hepatic stellate cells. NADPH oxidase plays a critical role in PM2.5-induced liver fibrogenesis. CONCLUSIONS Exposure to PM2.5 exerts discernible effects on promoting hepatic fibrogenesis. NADPH oxidase mediates the effects of PM2.5 exposure on promoting hepatic fibrosis.


Diabetes | 2016

CREBH Couples Circadian Clock With Hepatic Lipid Metabolism

Ze Zheng; Hyunbae Kim; Xuequn Chen; Roberto Mendez; Aditya Dandekar; Xuebao Zhang; Chunbin Zhang; Andrew C. Liu; Lei Yin; Jiandie D. Lin; Paul D. Walker; Gregory Kapatos; Kezhong Zhang

The circadian clock orchestrates diverse physiological processes critical for health and disease. CREB, hepatocyte specific (CREBH) is a liver-enriched, endoplasmic reticulum (ER)–tethered transcription factor known to regulate the hepatic acute phase response and energy homeostasis under stress conditions. We demonstrate that CREBH is regulated by the circadian clock and functions as a circadian regulator of hepatic lipid metabolism. Proteolytic activation of CREBH in the liver exhibits typical circadian rhythmicity controlled by the core clock oscillator BMAL1 and AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway. GSK3β-mediated phosphorylation of CREBH modulates the association between CREBH and the coat protein complex II transport vesicle and thus controls the ER-to-Golgi transport and subsequent proteolytic cleavage of CREBH in a circadian manner. Functionally, CREBH regulates circadian expression of the key genes involved in triglyceride (TG) and fatty acid (FA) metabolism and is required to maintain circadian amplitudes of blood TG and FA in mice. During the circadian cycle, CREBH rhythmically regulates and interacts with the hepatic nuclear receptors peroxisome proliferator–activated receptor α and liver X receptor α as well as with the circadian oscillation activator DBP and the repressor E4BP4 to modulate CREBH transcriptional activities. In conclusion, these studies reveal that CREBH functions as a circadian-regulated liver transcriptional regulator that integrates energy metabolism with circadian rhythm.


PLOS ONE | 2013

Diabetes Mellitus Is Associated with Hepatocellular Carcinoma: A Retrospective Case-Control Study in Hepatitis Endemic Area

Ze Zheng; Chao Zhang; Jianhua Yan; Yanping Ruan; Xiaoyi Zhao; Xingting San; Yilei Mao; Qinghua Sun; Kezhong Zhang; Zhongjie Fan

Background A number of case-control patient studies have been conducted to investigate the association between diabetes mellitus (DM) and hepatocellular carcinoma (HCC). Despite some controversial reports, it has been suggested that DM is associated with HCC. The previous studies on this subject vary in the selection of populations, sample sizes, methodology, and analysis results. Therefore, it is necessary to further delineate the involvement of DM, together with other related risk factors, in HCC with large sample size and strict analysis methodology. Methods We conducted a hospital-based retrospective case-control study at Perking Union Medical College Hospital, China. A total of 1,568 patients with liver diseases were enrolled in the statistical study to evaluate the association of DM and other risk factors with HCC. Among these patients, 716 of them were diagnosed with benign liver diseases, and 852 patients were diagnosed as HCC. We utilized binary logistic regression and stepwise logistic regression to investigate the associations among DM, hypertension, fatty liver, cirrhosis, gallstone, HBV infection, HCV infection, and HCC. Results Statistical analysis through the stepwise regression model indicated that the prevalence of DM, male gender, cirrhosis, HCV infection, or HBV infection is higher in the HCC patient group compared to the control group. However, the prevalence of gallstone is negatively associated with HCC cases. DM co-exists with HBV infection, male gender, and age in the HCC cases. Binary logistic regression analysis suggested that DM may synergize with HBV infection in HCC development. Conclusion DM is strongly associated with the increased risk of HCC regardless of the prevalence of HBV infection, HCV infection, cirrhosis, male gender, and age. However, the synergistic interaction between DM and HBV in HCC occurrence is significant. Therefore, DM patients with HBV infection represent a very high HCC risk population and should be considered for HCC close surveillance program.


BMC Cancer | 2012

ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress pathways

Guohui Wang; Gang Liu; Xiaogang Wang; Seema Sethi; Rouba Ali-Fehmi; Judith Abrams; Ze Zheng; Kezhong Zhang; Stephen P. Ethier; Zeng-Quan Yang

BackgroundAmplification of the 8p11-12 region has been found in approximately 15% of human breast cancer and is associated with poor prognosis. Previous genomic analysis has led us to identify the endoplasmic reticulum (ER) lipid raft-associated 2 (ERLIN2) gene as one of the candidate oncogenes within the 8p11-12 amplicon in human breast cancer, particularly in the luminal subtype. ERLIN2, an ER membrane protein, has recently been identified as a novel mediator of ER-associated degradation. Yet, the biological roles of ERLIN2 and molecular mechanisms by which ERLIN2 coordinates ER pathways in breast carcinogenesis remain unclear.MethodsWe established the MCF10A-ERLIN2 cell line, which stably over expresses ERLIN2 in human nontransformed mammary epithelial cells (MCF10A) using the pLenti6/V5-ERLIN2 construct. ERLIN2 over expressing cells and their respective parental cell lines were assayed for in vitro transforming phenotypes. Next, we knocked down the ERLIN2 as well as the ER stress sensor IRE1α activity in the breast cancer cell lines to characterize the biological roles and molecular basis of the ERLIN2 in carcinogenesis. Finally, immunohistochemical staining was performed to detect ERLIN2 expression in normal and cancerous human breast tissuesResultsWe found that amplification of the ERLIN2 gene and over expression of the ERLIN2 protein occurs in both luminal and Her2 subtypes of breast cancer. Gain- and loss-of-function approaches demonstrated that ERLIN2 is a novel oncogenic factor associated with the ER stress response pathway. The IRE1α/XBP1 axis in the ER stress pathway modulated expression of ERLIN2 protein levels in breast cancer cells. We also showed that over expression of ERLIN2 facilitated the adaptation of breast epithelial cells to ER stress by supporting cell growth and protecting the cells from ER stress-induced cell death.ConclusionsERLIN2 may confer a selective growth advantage for breast cancer cells by facilitating a cytoprotective response to various cellular stresses associated with oncogenesis. The information provided here sheds new light on the mechanism of breast cancer malignancy


Molecular and Cellular Biology | 2017

CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis

Hyunbae Kim; Ze Zheng; Paul D. Walker; Gregory Kapatos; Kezhong Zhang

ABSTRACT Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress.

Collaboration


Dive into the Ze Zheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunbae Kim

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjay Rajagopalan

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Sun

Wayne State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge