Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zecai Zhang is active.

Publication


Featured researches published by Zecai Zhang.


Free Radical Biology and Medicine | 2015

Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts.

Yunhe Fu; Xiaoyu Hu; Yongguo Cao; Zecai Zhang; Naisheng Zhang

Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses.


Inflammation | 2014

Geniposide Plays an Anti-inflammatory Role via Regulating TLR4 and Downstream Signaling Pathways in Lipopolysaccharide-Induced Mastitis in Mice

Xiaojing Song; Wen Zhang; Tiancheng Wang; Haichao Jiang; Zecai Zhang; Yunhe Fu; Zhengtao Yang; Yongguo Cao; Naisheng Zhang

Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy.


Inflammation | 2014

Stevioside plays an anti-inflammatory role by regulating the NF-κB and MAPK pathways in S. aureus-infected mouse mammary glands.

Tiancheng Wang; Mengyao Guo; Xiaojing Song; Zecai Zhang; Haichao Jiang; Wei Wang; Yunhe Fu; Yongguo Cao; Lianqin Zhu; Naisheng Zhang

Mastitis is an inflammatory disease caused by microbial infection. Staphylococcus aureus is one of the primary bacteria responsible for mastitis. Stevioside is isolated from Stevia rebaudiana and is known to have therapeutic functions. This study was designed to evaluate the effects of stevioside in a mouse model of S. aureus-induced mastitis. In this study, the mouse mammary gland was infected with S. aureus to induce the mastitis model. The stevioside was administered intraperitoneally after the S. aureus infection was established. Hematoxylin–eosin (HE) staining, ELISA, Western blot, and q-PCR methods were used. The results show that stevioside significantly reduced the inflammatory cell infiltration and the levels of TNF-α, IL-1β, and IL-6 and the respective expression of their messenger RNAs (mRNAs). Further studies revealed that stevioside downregulated the TLR2, NF-κB, and (mitogen-activated protein kinase) MAPK signaling pathways in the S. aureus-infected mouse mammary gland. Our results demonstrate that stevioside reduced the expression of TNF-α, IL-1β, and IL-6 by inhibiting the phosphorylation of proteins in the NF-κB and MAPK signaling pathways dose-dependently, but that their mRNA expression was not obviously changed.


Inflammation | 2015

Selenium Deficiency Facilitates Inflammation Through the Regulation of TLR4 and TLR4-Related Signaling Pathways in the Mice Uterus

Zecai Zhang; Xuejiao Gao; Yongguo Cao; Haichao Jiang; Tiancheng Wang; Xiaojing Song; Mengyao Guo; Naisheng Zhang

Selenium (Se) is an essential nutritional trace element that affects the development and function of the reproductive system. Endometritis is a reproductive obstacle disease that can seriously reduce the reproductive capacity of animal. To study the effects of dietary Se deficiency on lipopolysaccharide (LPS)-induced mice endometritis, we generated a model of LPS-induced mice endometritis. The Se content in uterine tissues was detected by fluorescence spectrophotometry. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). The extent of phosphorylation of IκBα, NF-κB p65, ERK, JNK, and p38 and the expression of Toll-like receptor 4 (TLR4) were detected with Western blots. The TLR4 messenger RNA (mRNA) was analyzed with qRT-PCR. The results indicated that dietary Se intake significantly influenced Se levels in uterine tissues. The Se-deficient mice model was successfully replicated, and Se deficiency exacerbated uterine tissue histopathology; increased the expression of TNF-α, IL-1β, and IL-6; facilitated the activation of TLR4; and enhanced the phosphorylation of IκBα, p65, ERK, JNK, and p38 in LPS-induced mice endometritis. Also, the effects were inhibited by a supplement of Se. In conclusion, our studies demonstrated that Se deficiency makes mice uterus more prone to inflammation. An appropriate Se supplement could enhance the immune condition of the uterus.


International Immunopharmacology | 2014

Stevioside inhibits inflammation and apoptosis by regulating TLR2 and TLR2-related proteins in S. aureus-infected mouse mammary epithelial cells

Tiancheng Wang; Xiaojing Song; Zecai Zhang; Mengyao Guo; Haichao Jiang; Wei Wang; Yongguo Cao; Lianqin Zhu; Naisheng Zhang

Stevioside is a natural sweetener that is commonly used in traditional medicine and as a food additive. The object of this study was to investigate the anti-inflammatory and anti-apoptosis function of stevioside and the possible molecular mechanisms for such activity in Staphylococcus aureus (S. aureus)-infected mouse mammary epithelial cells (MMECs). The cells were treated with varying doses of stevioside before infection with S. aureus. The live/dead cells were detected by immunofluorescence microscopy. The pro-inflammatory cytokines were determined by ELISA. The mRNA of TLR2 and proteins related to NF-κB, MAPK and apoptosis were analyzed by q-PCR. The relative protein expression levels were determined by Western blot. The results indicated that stevioside inhibited the mRNA and protein expression of TNF-α, IL-6 and IL-1β dose-dependently in S. aureus-stimulated MMECs. Stevioside suppressed the S. aureus-induced expression of TLR2 and proteins of the NF-κB and MAPK pathways as well as apoptosis. The mRNA levels of IκBα, p38, ERK, JNK, p65, caspase-3 and Bax were not influenced by the stevioside treatment. Stevioside exerts anti-inflammatory and anti-apoptotic properties by inhibiting the release of cytokines and the activation of TLR2 and proteins of the NF-κB and MAPK signaling pathways, as well as caspase-3 and Bax.


International Immunopharmacology | 2015

Brazilin plays an anti-inflammatory role with regulating Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice

Xuejiao Gao; Tiancheng Wang; Zecai Zhang; Yongguo Cao; Naisheng Zhang; Mengyao Guo

Mastitis, which commonly occurs during the postpartum period, is caused by the infection of the mammary glands. The most common infectious bacterial pathogen of mastitis is Staphylococcus aureus (S. aureus) in both human and animals. Brazilin, a compound isolated from the traditional herbal medicine Caesalpinia sappan L., has been shown to exhibit multiple biological properties. The present study was performed to determine the effect of brazilin on the inflammatory response in the mouse model of S. aureus mastitis and to confirm the mechanism of action involved. Brazilin treatment was applied in both a mouse model and cells. After brazilin treatment of cells, Western blotting and qPCR were performed to detect the protein levels and mRNA levels, respectively. Brazilin treatment significantly attenuated inflammatory cell infiltration and inhibited the expressions of TNF-α, IL-1β and IL-6 in a dose-dependent manner. Administration of brazilin in mice suppressed S. aureus-induced inflammatory injury and the production of proinflammatory mediators. This suppression was achieved by reducing the increased expression of TLR2 and regulating the NF-κB and MAPK signaling pathways in the mammary gland tissues and cells with S. aureus-induced mastitis. These results suggest that brazilin appears to be an effective drug for the treatment of mastitis and may be applied as a clinical therapy.


Inflammation | 2015

Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

Xiaojing Song; Tiancheng Wang; Zecai Zhang; Haichao Jiang; Wei Wang; Yongguo Cao; Naisheng Zhang

AbstractBovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy. Graphical Abstractᅟ


Biological Trace Element Research | 2017

The Protective Effect of Baicalin Against Lead-Induced Renal Oxidative Damage in Mice

Zecai Zhang; Xuejiao Gao; Mengyao Guo; Haichao Jiang; Yongguo Cao; Naisheng Zhang

Lead (Pb) exposure is a global environmental problem that can deplete body antioxidant enzymes, causing damage to various macromolecules and ultimately cell death. Pb exposure could lead to serious renal damage. Baicalin, a traditional Chinese medicine, could protect against renal injury through inhibition of oxidative stress and apoptosis. This study was designed to investigate the protective efficacy of baicalin against Pb-induced nephrotoxicity in mice and to elucidate the potential mechanisms using animal experiment. The results revealed that baicalin decreased Pb-induced bodyweight loss, declined kidney coefficients, and ameliorated renal function and structure in a dose-dependent manner. Meanwhile, baicalin dose dependently increased Pb-induced activity of SOD and GSH-Px, while the content of MDA in the kidney was decreased. In addition, baicalin enhanced the Bcl-2/Bax ratio associated with apoptosis in the kidney. These data indicated that further investigation of the use of baicalin as a new natural chemopreventive agent against Pd poisoning is warranted.


Journal of Surgical Research | 2014

Inhibitory effects of astragalin on lipopolysaccharide-induced inflammatory response in mouse mammary epithelial cells

Fengyang Li; Wei Wang; Yongguo Cao; Dejie Liang; Wenlong Zhang; Zecai Zhang; Haichao Jiang; Mengyao Guo; Naisheng Zhang

BACKGROUND Tea brewed from the leaves of persimmon or Rosa agrestis have several medical functions including treating allergy, antiatopic dermatitis, and anti-inflammatory effects. The objective of this study was to investigate the molecular mechanisms of astragalin, a main flavonoid component isolated from these herbs, in modifying lipopolysaccharide (LPS)-induced signaling pathways in primary cultured mouse mammary epithelial cells (mMECs). MATERIALS AND METHODS The mMECs were treated with LPS in the absence or presence of different concentrations of astragalin. The expression of proinflammatory cytokines tumor necrosis factor α, and interleukin 6, as well as nitric oxide production were determined by enzyme-linked immunosorbent assay and Griess reaction, respectively. Cyclooxygenase-2, inducible nitric oxide synthase, toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), inhibitor protein of NF-κB (IκBα), P38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase were measured by Western blot. RESULTS The results showed that astragalin suppressed the expression of tumor necrosis factor α, interleukin 6, and nitric oxide in a dose-dependent manner in mMECs. Western blot results showed that the expression of inducible nitric oxide synthase and cyclooxygenase-2 was inhibited by astragalin. Besides, astragalin efficiently decreased LPS-induced TLR4 expression, NF-κB activation, IκBα degradation, and the phosphorylation of p38, extracellular signal-regulated kinase in BMECs. CONCLUSIONS Our results indicated that astragalin exerts anti-inflammatory properties possibly via the inactivation of TLR4-mediated NF-κB and mitogen-activated protein kinases signaling pathways in LPS-stimulated mMECs. Thus, astragalin may be a potential therapeutic agent for bovine mastitis.


Biological Trace Element Research | 2016

Selenium Deficiency Facilitates Inflammation Following S. aureus Infection by Regulating TLR2-Related Pathways in the Mouse Mammary Gland.

Xuejiao Gao; Zecai Zhang; Ying Li; Peng Shen; Xiaoyu Hu; Yongguo Cao; Naisheng Zhang

Selenium (Se) is an essential micronutrient affecting various aspects of health. Se deficiency has been associated with inflammation and immune responses. Mastitis poses a serious problem for humans and animals in the postpartum period. Staphylococcus aureus (S. aureus) is the most common infectious bacterial pathogen associated with mastitis. The present study sought to determine the effects and underlying mechanism of dietary Se on S. aureus-induced inflammation using a model of mouse mastitis. ELISA and Western blotting were performed to detect protein levels. Quantitative PCR (qPCR) was performed to detect messenger RNA (mRNA) levels. The histopathological changes indicated that Se deficiency resulted in increased inflammatory lesions in S. aureus mastitis, whereas Se deficiency did not induce inflammatory lesions in the mammary gland. Myeloperoxidase (MPO) activity was increased in Se-deficient mice with S. aureus mastitis. Analysis of cytokine mRNA and protein showed that Se deficiency leads to increased TNF-α, IL-1β, and IL-6 production in S. aureus mastitis. In addition, Se deficiency enhanced the mRNA and protein expressions of toll-like receptor 2 (TLR2), which were originally upregulated by S. aureus in the mammary gland tissues and human embryonic kidney 293 (HEK293)-mTLR2 cells. When Se-deficient mice were infected with S. aureus, the phosphorylation of IκB, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 was greatly increased. The results indicate that Se deficiency could intensify the inflammatory reaction in S. aureus mastitis. This work contributes to the exploration of new methods of preventing or treating of S. aureus mastitis and other infectious diseases.

Collaboration


Dive into the Zecai Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mengyao Guo

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge